Characterization of substitutional and interstitial Eu+3-positions in CdS lattice

Cd1-xEuxS thin films, with x in the 0 ≤ x ≤ 5 at% range, were prepared by chemical bath at 80 °C on glass substrates. X ray diffraction (XRD) patterns reveal that the samples crystallize in cubic zinc blende phase, with high preferred orientation along the (111) direction. From XRD data the (111) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2021-01, Vol.257, p.123763, Article 123763
Hauptverfasser: Acosta-Silva, Y.J., Méndez-López, A., de Moure-Flores, F., Tomás, S., Lozada-Morales, R., Meléndez-Lira, M., Zelaya-Angel, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 123763
container_title Materials chemistry and physics
container_volume 257
creator Acosta-Silva, Y.J.
Méndez-López, A.
de Moure-Flores, F.
Tomás, S.
Lozada-Morales, R.
Meléndez-Lira, M.
Zelaya-Angel, O.
description Cd1-xEuxS thin films, with x in the 0 ≤ x ≤ 5 at% range, were prepared by chemical bath at 80 °C on glass substrates. X ray diffraction (XRD) patterns reveal that the samples crystallize in cubic zinc blende phase, with high preferred orientation along the (111) direction. From XRD data the (111) interplanar spacing (IS) and average crystal size (CS) were calculated. IS(111) decreases from 0.3350 nm for x = 0.0–0.3346 nm for x = 1.2 at%, then increases from here to the initial value for x = 3.0 at%, after decreases slightly until x = 5.0 at%. CS follows approximately an inverse behavior of that of IS(111) vs x taking values in the 29.0–31.5 nm range. The vibrational mode 1LO hardens when x decreases and softens when x increases following the opposite behavior of IS(111), as is expected, however, 1TO follows an opposite behavior to that of 1LO. The direct optical band gap Eg reduces when x decreases and the contrary when x rises, which is the opposite to commonly observed. Besides, the photoluminescent (PL) energy-emissions exhibit a contrary dependence on x as that followed by Eg, this behavior is associated with the distortion of the host CdS lattice due to the Eu doping. PL signals from m1Dn1 → m2Fn2 transitions of E2+,3+ ions are also affected by the behavior of IS(111). All the experimental results are discussed based on the relation among the different observations, and those results reported in the literature. Fig. 1.Eu-at% concentration from EDS measurements of the CdSEu samples versus the volume of Eu solution (VEu) in the CdS chemical bath growing solution. The inset exhibits a SEM image of a CdSEu film. [Display omitted] •Rare earths doping II-VI compounds semiconductors.•Photoluminescence of CdS:Eu by doping in 0.0–5.0 at% Interval.•Lattice compression-expansion in cadmium sulfide by rare earths incorporation.•CdS lattice distortion by europium incorporation.•CdS dark resistivity by Eu Cd-substitution and interstitial.
doi_str_mv 10.1016/j.matchemphys.2020.123763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478821191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058420311226</els_id><sourcerecordid>2478821191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-701d65bdc3a3d527992f9f3bc2055253bfde7abb9c3f23b631458490cafe33023</originalsourceid><addsrcrecordid>eNqNUE1LxDAUDKLguvofKh6lNcnrV45S1g9YEFHPIc0Hm7Lb1iQV1l9vSj149PR482aGeYPQNcEZwaS867KDCHKnD-Pu6DOKacQpVCWcoBWpK5YCEHqKVpgWeYqLOj9HF953GJOKEFih12YnnJBBO_stgh36ZDCJn1ofbJjmXewT0avE9pEygzYCm-kW0nHwdib4eEsa9ZbsRQhW6kt0ZsTe66vfuUYfD5v35indvjw-N_fbVFIKIa0wUWXRKgkCVEErxqhhBlpJcVHQAlqjdCXalkkwFNoSSB7TMyyF0QCYwhrdLL6jGz4n7QPvhsnFvJ7TvKprSggjkcUWlnSD904bPjp7EO7ICeZzg7zjfxrkc4N8aTBqm0Wr4xtfVjvupdW91Mo6LQNXg_2Hyw-iHoBh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478821191</pqid></control><display><type>article</type><title>Characterization of substitutional and interstitial Eu+3-positions in CdS lattice</title><source>Access via ScienceDirect (Elsevier)</source><creator>Acosta-Silva, Y.J. ; Méndez-López, A. ; de Moure-Flores, F. ; Tomás, S. ; Lozada-Morales, R. ; Meléndez-Lira, M. ; Zelaya-Angel, O.</creator><creatorcontrib>Acosta-Silva, Y.J. ; Méndez-López, A. ; de Moure-Flores, F. ; Tomás, S. ; Lozada-Morales, R. ; Meléndez-Lira, M. ; Zelaya-Angel, O.</creatorcontrib><description>Cd1-xEuxS thin films, with x in the 0 ≤ x ≤ 5 at% range, were prepared by chemical bath at 80 °C on glass substrates. X ray diffraction (XRD) patterns reveal that the samples crystallize in cubic zinc blende phase, with high preferred orientation along the (111) direction. From XRD data the (111) interplanar spacing (IS) and average crystal size (CS) were calculated. IS(111) decreases from 0.3350 nm for x = 0.0–0.3346 nm for x = 1.2 at%, then increases from here to the initial value for x = 3.0 at%, after decreases slightly until x = 5.0 at%. CS follows approximately an inverse behavior of that of IS(111) vs x taking values in the 29.0–31.5 nm range. The vibrational mode 1LO hardens when x decreases and softens when x increases following the opposite behavior of IS(111), as is expected, however, 1TO follows an opposite behavior to that of 1LO. The direct optical band gap Eg reduces when x decreases and the contrary when x rises, which is the opposite to commonly observed. Besides, the photoluminescent (PL) energy-emissions exhibit a contrary dependence on x as that followed by Eg, this behavior is associated with the distortion of the host CdS lattice due to the Eu doping. PL signals from m1Dn1 → m2Fn2 transitions of E2+,3+ ions are also affected by the behavior of IS(111). All the experimental results are discussed based on the relation among the different observations, and those results reported in the literature. Fig. 1.Eu-at% concentration from EDS measurements of the CdSEu samples versus the volume of Eu solution (VEu) in the CdS chemical bath growing solution. The inset exhibits a SEM image of a CdSEu film. [Display omitted] •Rare earths doping II-VI compounds semiconductors.•Photoluminescence of CdS:Eu by doping in 0.0–5.0 at% Interval.•Lattice compression-expansion in cadmium sulfide by rare earths incorporation.•CdS lattice distortion by europium incorporation.•CdS dark resistivity by Eu Cd-substitution and interstitial.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2020.123763</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cadmium sulfide ; CdEuS photoluminescence ; Diffraction patterns ; Eu doped CdS films ; Europium incorporation in II-VI compounds ; Glass substrates ; Hardening-softening of phonons ; Photoluminescence ; Preferred orientation ; Thin films ; Unit cell contraction-expansión ; X-ray diffraction ; Zincblende</subject><ispartof>Materials chemistry and physics, 2021-01, Vol.257, p.123763, Article 123763</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-701d65bdc3a3d527992f9f3bc2055253bfde7abb9c3f23b631458490cafe33023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2020.123763$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Acosta-Silva, Y.J.</creatorcontrib><creatorcontrib>Méndez-López, A.</creatorcontrib><creatorcontrib>de Moure-Flores, F.</creatorcontrib><creatorcontrib>Tomás, S.</creatorcontrib><creatorcontrib>Lozada-Morales, R.</creatorcontrib><creatorcontrib>Meléndez-Lira, M.</creatorcontrib><creatorcontrib>Zelaya-Angel, O.</creatorcontrib><title>Characterization of substitutional and interstitial Eu+3-positions in CdS lattice</title><title>Materials chemistry and physics</title><description>Cd1-xEuxS thin films, with x in the 0 ≤ x ≤ 5 at% range, were prepared by chemical bath at 80 °C on glass substrates. X ray diffraction (XRD) patterns reveal that the samples crystallize in cubic zinc blende phase, with high preferred orientation along the (111) direction. From XRD data the (111) interplanar spacing (IS) and average crystal size (CS) were calculated. IS(111) decreases from 0.3350 nm for x = 0.0–0.3346 nm for x = 1.2 at%, then increases from here to the initial value for x = 3.0 at%, after decreases slightly until x = 5.0 at%. CS follows approximately an inverse behavior of that of IS(111) vs x taking values in the 29.0–31.5 nm range. The vibrational mode 1LO hardens when x decreases and softens when x increases following the opposite behavior of IS(111), as is expected, however, 1TO follows an opposite behavior to that of 1LO. The direct optical band gap Eg reduces when x decreases and the contrary when x rises, which is the opposite to commonly observed. Besides, the photoluminescent (PL) energy-emissions exhibit a contrary dependence on x as that followed by Eg, this behavior is associated with the distortion of the host CdS lattice due to the Eu doping. PL signals from m1Dn1 → m2Fn2 transitions of E2+,3+ ions are also affected by the behavior of IS(111). All the experimental results are discussed based on the relation among the different observations, and those results reported in the literature. Fig. 1.Eu-at% concentration from EDS measurements of the CdSEu samples versus the volume of Eu solution (VEu) in the CdS chemical bath growing solution. The inset exhibits a SEM image of a CdSEu film. [Display omitted] •Rare earths doping II-VI compounds semiconductors.•Photoluminescence of CdS:Eu by doping in 0.0–5.0 at% Interval.•Lattice compression-expansion in cadmium sulfide by rare earths incorporation.•CdS lattice distortion by europium incorporation.•CdS dark resistivity by Eu Cd-substitution and interstitial.</description><subject>Cadmium sulfide</subject><subject>CdEuS photoluminescence</subject><subject>Diffraction patterns</subject><subject>Eu doped CdS films</subject><subject>Europium incorporation in II-VI compounds</subject><subject>Glass substrates</subject><subject>Hardening-softening of phonons</subject><subject>Photoluminescence</subject><subject>Preferred orientation</subject><subject>Thin films</subject><subject>Unit cell contraction-expansión</subject><subject>X-ray diffraction</subject><subject>Zincblende</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUDKLguvofKh6lNcnrV45S1g9YEFHPIc0Hm7Lb1iQV1l9vSj149PR482aGeYPQNcEZwaS867KDCHKnD-Pu6DOKacQpVCWcoBWpK5YCEHqKVpgWeYqLOj9HF953GJOKEFih12YnnJBBO_stgh36ZDCJn1ofbJjmXewT0avE9pEygzYCm-kW0nHwdib4eEsa9ZbsRQhW6kt0ZsTe66vfuUYfD5v35indvjw-N_fbVFIKIa0wUWXRKgkCVEErxqhhBlpJcVHQAlqjdCXalkkwFNoSSB7TMyyF0QCYwhrdLL6jGz4n7QPvhsnFvJ7TvKprSggjkcUWlnSD904bPjp7EO7ICeZzg7zjfxrkc4N8aTBqm0Wr4xtfVjvupdW91Mo6LQNXg_2Hyw-iHoBh</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Acosta-Silva, Y.J.</creator><creator>Méndez-López, A.</creator><creator>de Moure-Flores, F.</creator><creator>Tomás, S.</creator><creator>Lozada-Morales, R.</creator><creator>Meléndez-Lira, M.</creator><creator>Zelaya-Angel, O.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Characterization of substitutional and interstitial Eu+3-positions in CdS lattice</title><author>Acosta-Silva, Y.J. ; Méndez-López, A. ; de Moure-Flores, F. ; Tomás, S. ; Lozada-Morales, R. ; Meléndez-Lira, M. ; Zelaya-Angel, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-701d65bdc3a3d527992f9f3bc2055253bfde7abb9c3f23b631458490cafe33023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cadmium sulfide</topic><topic>CdEuS photoluminescence</topic><topic>Diffraction patterns</topic><topic>Eu doped CdS films</topic><topic>Europium incorporation in II-VI compounds</topic><topic>Glass substrates</topic><topic>Hardening-softening of phonons</topic><topic>Photoluminescence</topic><topic>Preferred orientation</topic><topic>Thin films</topic><topic>Unit cell contraction-expansión</topic><topic>X-ray diffraction</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta-Silva, Y.J.</creatorcontrib><creatorcontrib>Méndez-López, A.</creatorcontrib><creatorcontrib>de Moure-Flores, F.</creatorcontrib><creatorcontrib>Tomás, S.</creatorcontrib><creatorcontrib>Lozada-Morales, R.</creatorcontrib><creatorcontrib>Meléndez-Lira, M.</creatorcontrib><creatorcontrib>Zelaya-Angel, O.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta-Silva, Y.J.</au><au>Méndez-López, A.</au><au>de Moure-Flores, F.</au><au>Tomás, S.</au><au>Lozada-Morales, R.</au><au>Meléndez-Lira, M.</au><au>Zelaya-Angel, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of substitutional and interstitial Eu+3-positions in CdS lattice</atitle><jtitle>Materials chemistry and physics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>257</volume><spage>123763</spage><pages>123763-</pages><artnum>123763</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Cd1-xEuxS thin films, with x in the 0 ≤ x ≤ 5 at% range, were prepared by chemical bath at 80 °C on glass substrates. X ray diffraction (XRD) patterns reveal that the samples crystallize in cubic zinc blende phase, with high preferred orientation along the (111) direction. From XRD data the (111) interplanar spacing (IS) and average crystal size (CS) were calculated. IS(111) decreases from 0.3350 nm for x = 0.0–0.3346 nm for x = 1.2 at%, then increases from here to the initial value for x = 3.0 at%, after decreases slightly until x = 5.0 at%. CS follows approximately an inverse behavior of that of IS(111) vs x taking values in the 29.0–31.5 nm range. The vibrational mode 1LO hardens when x decreases and softens when x increases following the opposite behavior of IS(111), as is expected, however, 1TO follows an opposite behavior to that of 1LO. The direct optical band gap Eg reduces when x decreases and the contrary when x rises, which is the opposite to commonly observed. Besides, the photoluminescent (PL) energy-emissions exhibit a contrary dependence on x as that followed by Eg, this behavior is associated with the distortion of the host CdS lattice due to the Eu doping. PL signals from m1Dn1 → m2Fn2 transitions of E2+,3+ ions are also affected by the behavior of IS(111). All the experimental results are discussed based on the relation among the different observations, and those results reported in the literature. Fig. 1.Eu-at% concentration from EDS measurements of the CdSEu samples versus the volume of Eu solution (VEu) in the CdS chemical bath growing solution. The inset exhibits a SEM image of a CdSEu film. [Display omitted] •Rare earths doping II-VI compounds semiconductors.•Photoluminescence of CdS:Eu by doping in 0.0–5.0 at% Interval.•Lattice compression-expansion in cadmium sulfide by rare earths incorporation.•CdS lattice distortion by europium incorporation.•CdS dark resistivity by Eu Cd-substitution and interstitial.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2020.123763</doi></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2021-01, Vol.257, p.123763, Article 123763
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2478821191
source Access via ScienceDirect (Elsevier)
subjects Cadmium sulfide
CdEuS photoluminescence
Diffraction patterns
Eu doped CdS films
Europium incorporation in II-VI compounds
Glass substrates
Hardening-softening of phonons
Photoluminescence
Preferred orientation
Thin films
Unit cell contraction-expansión
X-ray diffraction
Zincblende
title Characterization of substitutional and interstitial Eu+3-positions in CdS lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20substitutional%20and%20interstitial%20Eu+3-positions%20in%20CdS%20lattice&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Acosta-Silva,%20Y.J.&rft.date=2021-01-01&rft.volume=257&rft.spage=123763&rft.pages=123763-&rft.artnum=123763&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2020.123763&rft_dat=%3Cproquest_cross%3E2478821191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478821191&rft_id=info:pmid/&rft_els_id=S0254058420311226&rfr_iscdi=true