Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method

Phase diagram calculation of Fe–Ti system is obtained by coupling of CALPHAD with first principle methods. Single Gibbs energy model is used for FeTi to take care of order-disorder transition. First principle calculation shows that Laves phase is ferromagnetic nature with the magnetic moment of 1.41...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2021-01, Vol.128, p.106978, Article 106978
Hauptverfasser: Santhy, K., Hari Kumar, K.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106978
container_title Intermetallics
container_volume 128
creator Santhy, K.
Hari Kumar, K.C.
description Phase diagram calculation of Fe–Ti system is obtained by coupling of CALPHAD with first principle methods. Single Gibbs energy model is used for FeTi to take care of order-disorder transition. First principle calculation shows that Laves phase is ferromagnetic nature with the magnetic moment of 1.417μB which is incorporated in the modelling. For extrapolation to higher order system, Laves phase is mostly expressed with two sublattice model. From crystallographic view, 3 sublattice model is appropriate one for description of Laves phase. Hence, two different models are used for Laves phase. Wagner-Schottky model used to describe the homogeneity region of Laves phase in two sublattice model. Using the first principle method, the energies of formation of unstable end members of FeTi phase and three sublattice model of Laves phase are calculated and incorporated as experimental data in optimisation. Calculated phase diagram and the thermochemical properties using 3 sublattice model of Laves phase shows good agreement with the experimental data. •Magnetism of Laves phase confirmed with First principle calculation and incorporated in Modelling.•Single Gibbs energy model is used for BCC and B2(FeTi) phase.•Energy of end members of FeTi and Laves phase are calculated by first principle method.•Calculated phase diagram is compared with two and three sublattice models of Laves phase.
doi_str_mv 10.1016/j.intermet.2020.106978
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2478820988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979520308827</els_id><sourcerecordid>2478820988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-72943f9b28211a5535943d4c4e40637c2ed93af3addd8fa051ab0150570a91683</originalsourceid><addsrcrecordid>eNqNkM1uEzEURi1EJULpK1SWWKIJ1_b82DtQRAGpEpuwreWM7zSOZuxgO0XZ8Q68IU-CR9OyLStfX33H_nQIuWawZsDa94e18xnjhHnNgc_LVnXyBVkx2akKOGtfkhWotq1Up5pX5HVKBwDWgWhW5G67L2iwZ28m19My4Tg6f0_DQCdz7zGX7WgeMNHj3iSkztMb_PPr99bRdE4ZJ3pKc35wMWV6jM737jgiLXX2wb4hF4MZE149npfk-82n7eZLdfvt89fNx9uqFzXkquOqFoPacckZM00jmnK3dV9jDa3oeo5WCTMIY62Vg4GGmR2wBpoOjGKtFJfk7fLuMYYfJ0xZH8Ip-vKl5nUnJQcl51S7pPoYUoo46NJ3MvGsGejZpT7oJ5d6dqkXlwWUC_gTd2FIvUPf4z8YABrVilKjTCA2Lpvsgt-Ek88Ffff_aEl_WNJYZD04jPqRsC5in7UN7rmufwE68KKD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478820988</pqid></control><display><type>article</type><title>Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Santhy, K. ; Hari Kumar, K.C.</creator><creatorcontrib>Santhy, K. ; Hari Kumar, K.C.</creatorcontrib><description>Phase diagram calculation of Fe–Ti system is obtained by coupling of CALPHAD with first principle methods. Single Gibbs energy model is used for FeTi to take care of order-disorder transition. First principle calculation shows that Laves phase is ferromagnetic nature with the magnetic moment of 1.417μB which is incorporated in the modelling. For extrapolation to higher order system, Laves phase is mostly expressed with two sublattice model. From crystallographic view, 3 sublattice model is appropriate one for description of Laves phase. Hence, two different models are used for Laves phase. Wagner-Schottky model used to describe the homogeneity region of Laves phase in two sublattice model. Using the first principle method, the energies of formation of unstable end members of FeTi phase and three sublattice model of Laves phase are calculated and incorporated as experimental data in optimisation. Calculated phase diagram and the thermochemical properties using 3 sublattice model of Laves phase shows good agreement with the experimental data. •Magnetism of Laves phase confirmed with First principle calculation and incorporated in Modelling.•Single Gibbs energy model is used for BCC and B2(FeTi) phase.•Energy of end members of FeTi and Laves phase are calculated by first principle method.•Calculated phase diagram is compared with two and three sublattice models of Laves phase.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2020.106978</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>CALPHAD Approach ; Chemistry ; Chemistry, Physical ; Crystallography ; Ferromagnetism ; Fe–Ti system ; First principle method ; First principles ; Homogeneity ; Iron ; Laves phase ; Magnetic moments ; Magnetism of laves phase ; Materials Science ; Materials Science, Multidisciplinary ; Metallurgy &amp; Metallurgical Engineering ; Modelling ; Optimization ; Order-disorder model ; Order-disorder transformations ; Phase diagram ; Phase diagrams ; Physical Sciences ; Science &amp; Technology ; Technology ; Thermochemical properties ; Thermodynamic models ; Titanium</subject><ispartof>Intermetallics, 2021-01, Vol.128, p.106978, Article 106978</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000596368300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c340t-72943f9b28211a5535943d4c4e40637c2ed93af3addd8fa051ab0150570a91683</citedby><cites>FETCH-LOGICAL-c340t-72943f9b28211a5535943d4c4e40637c2ed93af3addd8fa051ab0150570a91683</cites><orcidid>0000-0002-1306-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2020.106978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,39267,46004</link.rule.ids></links><search><creatorcontrib>Santhy, K.</creatorcontrib><creatorcontrib>Hari Kumar, K.C.</creatorcontrib><title>Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method</title><title>Intermetallics</title><addtitle>INTERMETALLICS</addtitle><description>Phase diagram calculation of Fe–Ti system is obtained by coupling of CALPHAD with first principle methods. Single Gibbs energy model is used for FeTi to take care of order-disorder transition. First principle calculation shows that Laves phase is ferromagnetic nature with the magnetic moment of 1.417μB which is incorporated in the modelling. For extrapolation to higher order system, Laves phase is mostly expressed with two sublattice model. From crystallographic view, 3 sublattice model is appropriate one for description of Laves phase. Hence, two different models are used for Laves phase. Wagner-Schottky model used to describe the homogeneity region of Laves phase in two sublattice model. Using the first principle method, the energies of formation of unstable end members of FeTi phase and three sublattice model of Laves phase are calculated and incorporated as experimental data in optimisation. Calculated phase diagram and the thermochemical properties using 3 sublattice model of Laves phase shows good agreement with the experimental data. •Magnetism of Laves phase confirmed with First principle calculation and incorporated in Modelling.•Single Gibbs energy model is used for BCC and B2(FeTi) phase.•Energy of end members of FeTi and Laves phase are calculated by first principle method.•Calculated phase diagram is compared with two and three sublattice models of Laves phase.</description><subject>CALPHAD Approach</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Crystallography</subject><subject>Ferromagnetism</subject><subject>Fe–Ti system</subject><subject>First principle method</subject><subject>First principles</subject><subject>Homogeneity</subject><subject>Iron</subject><subject>Laves phase</subject><subject>Magnetic moments</subject><subject>Magnetism of laves phase</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Order-disorder model</subject><subject>Order-disorder transformations</subject><subject>Phase diagram</subject><subject>Phase diagrams</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Thermochemical properties</subject><subject>Thermodynamic models</subject><subject>Titanium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1uEzEURi1EJULpK1SWWKIJ1_b82DtQRAGpEpuwreWM7zSOZuxgO0XZ8Q68IU-CR9OyLStfX33H_nQIuWawZsDa94e18xnjhHnNgc_LVnXyBVkx2akKOGtfkhWotq1Up5pX5HVKBwDWgWhW5G67L2iwZ28m19My4Tg6f0_DQCdz7zGX7WgeMNHj3iSkztMb_PPr99bRdE4ZJ3pKc35wMWV6jM737jgiLXX2wb4hF4MZE149npfk-82n7eZLdfvt89fNx9uqFzXkquOqFoPacckZM00jmnK3dV9jDa3oeo5WCTMIY62Vg4GGmR2wBpoOjGKtFJfk7fLuMYYfJ0xZH8Ip-vKl5nUnJQcl51S7pPoYUoo46NJ3MvGsGejZpT7oJ5d6dqkXlwWUC_gTd2FIvUPf4z8YABrVilKjTCA2Lpvsgt-Ek88Ffff_aEl_WNJYZD04jPqRsC5in7UN7rmufwE68KKD</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Santhy, K.</creator><creator>Hari Kumar, K.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1306-085X</orcidid></search><sort><creationdate>202101</creationdate><title>Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method</title><author>Santhy, K. ; Hari Kumar, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-72943f9b28211a5535943d4c4e40637c2ed93af3addd8fa051ab0150570a91683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALPHAD Approach</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Crystallography</topic><topic>Ferromagnetism</topic><topic>Fe–Ti system</topic><topic>First principle method</topic><topic>First principles</topic><topic>Homogeneity</topic><topic>Iron</topic><topic>Laves phase</topic><topic>Magnetic moments</topic><topic>Magnetism of laves phase</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Order-disorder model</topic><topic>Order-disorder transformations</topic><topic>Phase diagram</topic><topic>Phase diagrams</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Thermochemical properties</topic><topic>Thermodynamic models</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santhy, K.</creatorcontrib><creatorcontrib>Hari Kumar, K.C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santhy, K.</au><au>Hari Kumar, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method</atitle><jtitle>Intermetallics</jtitle><stitle>INTERMETALLICS</stitle><date>2021-01</date><risdate>2021</risdate><volume>128</volume><spage>106978</spage><pages>106978-</pages><artnum>106978</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>Phase diagram calculation of Fe–Ti system is obtained by coupling of CALPHAD with first principle methods. Single Gibbs energy model is used for FeTi to take care of order-disorder transition. First principle calculation shows that Laves phase is ferromagnetic nature with the magnetic moment of 1.417μB which is incorporated in the modelling. For extrapolation to higher order system, Laves phase is mostly expressed with two sublattice model. From crystallographic view, 3 sublattice model is appropriate one for description of Laves phase. Hence, two different models are used for Laves phase. Wagner-Schottky model used to describe the homogeneity region of Laves phase in two sublattice model. Using the first principle method, the energies of formation of unstable end members of FeTi phase and three sublattice model of Laves phase are calculated and incorporated as experimental data in optimisation. Calculated phase diagram and the thermochemical properties using 3 sublattice model of Laves phase shows good agreement with the experimental data. •Magnetism of Laves phase confirmed with First principle calculation and incorporated in Modelling.•Single Gibbs energy model is used for BCC and B2(FeTi) phase.•Energy of end members of FeTi and Laves phase are calculated by first principle method.•Calculated phase diagram is compared with two and three sublattice models of Laves phase.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2020.106978</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1306-085X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2021-01, Vol.128, p.106978, Article 106978
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2478820988
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects CALPHAD Approach
Chemistry
Chemistry, Physical
Crystallography
Ferromagnetism
Fe–Ti system
First principle method
First principles
Homogeneity
Iron
Laves phase
Magnetic moments
Magnetism of laves phase
Materials Science
Materials Science, Multidisciplinary
Metallurgy & Metallurgical Engineering
Modelling
Optimization
Order-disorder model
Order-disorder transformations
Phase diagram
Phase diagrams
Physical Sciences
Science & Technology
Technology
Thermochemical properties
Thermodynamic models
Titanium
title Thermodynamic modelling of magnetic laves phase in Fe–Ti system using first principle method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modelling%20of%20magnetic%20laves%20phase%20in%20Fe%E2%80%93Ti%20system%20using%20first%20principle%20method&rft.jtitle=Intermetallics&rft.au=Santhy,%20K.&rft.date=2021-01&rft.volume=128&rft.spage=106978&rft.pages=106978-&rft.artnum=106978&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2020.106978&rft_dat=%3Cproquest_elsev%3E2478820988%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478820988&rft_id=info:pmid/&rft_els_id=S0966979520308827&rfr_iscdi=true