Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature

Methylammonium lead iodide (MAPbI3) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI3 perovskite powders. The microstructure morphology of the MAPbI3 annealed samples reveals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1089-1099
Hauptverfasser: Bonadio, A, Escanhoela, C A, Sabino, F P, Sombrio, G, de Paula, V G, Ferreira, F F, Janotti, A, Dalpian, G M, Souza, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue 2
container_start_page 1089
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Bonadio, A
Escanhoela, C A
Sabino, F P
Sombrio, G
de Paula, V G
Ferreira, F F
Janotti, A
Dalpian, G M
Souza, J A
description Methylammonium lead iodide (MAPbI3) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI3 perovskite powders. The microstructure morphology of the MAPbI3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K (kBT = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI3. The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range.
doi_str_mv 10.1039/d0ta10492b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478788997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478788997</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-10a6e537fdd7f482dda878bc80481c03df1b44b0a04985c18566bcb10083c7723</originalsourceid><addsrcrecordid>eNo9T0tLAzEYDKJgaXvxFwQ8r37ZZDdfjlKqFlrsQc8lr7Vb2s2aZAX99W5RnMsMc5gHITcM7hhwde8gawZCleaCTEqooJBC1Zf_GvGazFM6wAgEqJWakM2yyzH0X4WL7afvaMratMf2W-c2dDQ0NO89tYNpLe33OvmztdFbs-JUZxpDONHsT72POg_Rz8hVo4_Jz_94St4el6-L52L98rRaPKyLd1ZBLhjo2ldcNs7JRmDpnEaJxiIIZBa4a5gRwoAez2BlGVZ1baxh42xupSz5lNz-5vYxfAw-5d0hDLEbK3elkGMWKiX5D10YT2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478788997</pqid></control><display><type>article</type><title>Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bonadio, A ; Escanhoela, C A ; Sabino, F P ; Sombrio, G ; de Paula, V G ; Ferreira, F F ; Janotti, A ; Dalpian, G M ; Souza, J A</creator><creatorcontrib>Bonadio, A ; Escanhoela, C A ; Sabino, F P ; Sombrio, G ; de Paula, V G ; Ferreira, F F ; Janotti, A ; Dalpian, G M ; Souza, J A</creatorcontrib><description>Methylammonium lead iodide (MAPbI3) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI3 perovskite powders. The microstructure morphology of the MAPbI3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K (kBT = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI3. The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta10492b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Cations ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Entropy ; Grain boundaries ; Inert atmospheres ; Iodides ; Microstructure ; Morphology ; Optoelectronic devices ; Organic chemistry ; Perovskites ; Phase diagrams ; Phase transitions ; Photovoltaic cells ; Room temperature ; Sintering (powder metallurgy) ; Solar cells ; Stabilization</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1089-1099</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bonadio, A</creatorcontrib><creatorcontrib>Escanhoela, C A</creatorcontrib><creatorcontrib>Sabino, F P</creatorcontrib><creatorcontrib>Sombrio, G</creatorcontrib><creatorcontrib>de Paula, V G</creatorcontrib><creatorcontrib>Ferreira, F F</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Dalpian, G M</creatorcontrib><creatorcontrib>Souza, J A</creatorcontrib><title>Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Methylammonium lead iodide (MAPbI3) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI3 perovskite powders. The microstructure morphology of the MAPbI3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K (kBT = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI3. The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range.</description><subject>Annealing</subject><subject>Cations</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Entropy</subject><subject>Grain boundaries</subject><subject>Inert atmospheres</subject><subject>Iodides</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Optoelectronic devices</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Room temperature</subject><subject>Sintering (powder metallurgy)</subject><subject>Solar cells</subject><subject>Stabilization</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9T0tLAzEYDKJgaXvxFwQ8r37ZZDdfjlKqFlrsQc8lr7Vb2s2aZAX99W5RnMsMc5gHITcM7hhwde8gawZCleaCTEqooJBC1Zf_GvGazFM6wAgEqJWakM2yyzH0X4WL7afvaMratMf2W-c2dDQ0NO89tYNpLe33OvmztdFbs-JUZxpDONHsT72POg_Rz8hVo4_Jz_94St4el6-L52L98rRaPKyLd1ZBLhjo2ldcNs7JRmDpnEaJxiIIZBa4a5gRwoAez2BlGVZ1baxh42xupSz5lNz-5vYxfAw-5d0hDLEbK3elkGMWKiX5D10YT2k</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bonadio, A</creator><creator>Escanhoela, C A</creator><creator>Sabino, F P</creator><creator>Sombrio, G</creator><creator>de Paula, V G</creator><creator>Ferreira, F F</creator><creator>Janotti, A</creator><creator>Dalpian, G M</creator><creator>Souza, J A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature</title><author>Bonadio, A ; Escanhoela, C A ; Sabino, F P ; Sombrio, G ; de Paula, V G ; Ferreira, F F ; Janotti, A ; Dalpian, G M ; Souza, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-10a6e537fdd7f482dda878bc80481c03df1b44b0a04985c18566bcb10083c7723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Cations</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Entropy</topic><topic>Grain boundaries</topic><topic>Inert atmospheres</topic><topic>Iodides</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Optoelectronic devices</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Room temperature</topic><topic>Sintering (powder metallurgy)</topic><topic>Solar cells</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonadio, A</creatorcontrib><creatorcontrib>Escanhoela, C A</creatorcontrib><creatorcontrib>Sabino, F P</creatorcontrib><creatorcontrib>Sombrio, G</creatorcontrib><creatorcontrib>de Paula, V G</creatorcontrib><creatorcontrib>Ferreira, F F</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Dalpian, G M</creatorcontrib><creatorcontrib>Souza, J A</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonadio, A</au><au>Escanhoela, C A</au><au>Sabino, F P</au><au>Sombrio, G</au><au>de Paula, V G</au><au>Ferreira, F F</au><au>Janotti, A</au><au>Dalpian, G M</au><au>Souza, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>1089</spage><epage>1099</epage><pages>1089-1099</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Methylammonium lead iodide (MAPbI3) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI3 perovskite powders. The microstructure morphology of the MAPbI3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K (kBT = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI3. The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta10492b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.1089-1099
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2478788997
source Royal Society Of Chemistry Journals 2008-
subjects Annealing
Cations
Electrical conductivity
Electrical properties
Electrical resistivity
Entropy
Grain boundaries
Inert atmospheres
Iodides
Microstructure
Morphology
Optoelectronic devices
Organic chemistry
Perovskites
Phase diagrams
Phase transitions
Photovoltaic cells
Room temperature
Sintering (powder metallurgy)
Solar cells
Stabilization
title Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-driven%20stabilization%20of%20the%20cubic%20phase%20of%20MaPbI3%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Bonadio,%20A&rft.date=2021-01-01&rft.volume=9&rft.issue=2&rft.spage=1089&rft.epage=1099&rft.pages=1089-1099&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta10492b&rft_dat=%3Cproquest%3E2478788997%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478788997&rft_id=info:pmid/&rfr_iscdi=true