Mixed-integer bilevel representability
We study the representability of sets by extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of po...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2021-01, Vol.185 (1-2), p.163-197 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 1-2 |
container_start_page | 163 |
container_title | Mathematical programming |
container_volume | 185 |
creator | Basu, Amitabh Ryan, Christopher Thomas Sankaranarayanan, Sriram |
description | We study the representability of sets by extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of polyhedra. Conversely, any finite union of polyhedra can be represented using any one of these three paradigms. We then prove that the feasible region of bilevel problems with integer variables exclusively in the upper level is a finite union of sets representable by mixed-integer programs and vice versa. Further, we prove that, up to topological closures, we do not get additional modeling power by allowing integer variables in the lower level as well. To establish the last statement, we prove that the family of sets that are finite unions of mixed-integer representable sets (up to topological closures) forms an algebra of sets; i.e., this family is closed under finite unions, intersections and complementation. |
doi_str_mv | 10.1007/s10107-019-01424-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478787897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478787897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1169f889cb2d42daffc1e1641ca6dd81d8f128b242c730f7e7d0cbe4f713812d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFNB8BadyaZJ9ihFq1Dxouewm0xky7qtydbaf2_qCt7KMAwM770ZPsYuEW4QQN8mBATNAcvcUki-PWIjlIXiUkl1zEYAYsqnCuGUnaW0BAAsjBmx6-fmmzxvup7eKU7qpqUvaieR1pESdX2VN02_O2cnoWoTXfzNMXt7uH-dPfLFy_xpdrfgrpC654iqDMaUrhZeCl-F4JBQSXSV8t6gNwGFqYUUThcQNGkPriYZdP4GhS_G7GrIXcfV54ZSb5erTezySSukNvsq9UGVMCBQliCySgwqF1cpRQp2HZuPKu4sgt1TswM1m6nZX2p2m03FYEpZ3GUk_9EHXD_10W56</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280214902</pqid></control><display><type>article</type><title>Mixed-integer bilevel representability</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Basu, Amitabh ; Ryan, Christopher Thomas ; Sankaranarayanan, Sriram</creator><creatorcontrib>Basu, Amitabh ; Ryan, Christopher Thomas ; Sankaranarayanan, Sriram</creatorcontrib><description>We study the representability of sets by extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of polyhedra. Conversely, any finite union of polyhedra can be represented using any one of these three paradigms. We then prove that the feasible region of bilevel problems with integer variables exclusively in the upper level is a finite union of sets representable by mixed-integer programs and vice versa. Further, we prove that, up to topological closures, we do not get additional modeling power by allowing integer variables in the lower level as well. To establish the last statement, we prove that the family of sets that are finite unions of mixed-integer representable sets (up to topological closures) forms an algebra of sets; i.e., this family is closed under finite unions, intersections and complementation.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-019-01424-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Closures ; Combinatorics ; Constraint modelling ; Formulations ; Full Length Paper ; Integer programming ; Integers ; Intersections ; Linear programming ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Mixed integer ; Numerical Analysis ; Optimization ; Polyhedra ; Theoretical ; Topology ; Unions</subject><ispartof>Mathematical programming, 2021-01, Vol.185 (1-2), p.163-197</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019</rights><rights>Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1169f889cb2d42daffc1e1641ca6dd81d8f128b242c730f7e7d0cbe4f713812d3</citedby><cites>FETCH-LOGICAL-c347t-1169f889cb2d42daffc1e1641ca6dd81d8f128b242c730f7e7d0cbe4f713812d3</cites><orcidid>0000-0002-4662-3241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-019-01424-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-019-01424-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Basu, Amitabh</creatorcontrib><creatorcontrib>Ryan, Christopher Thomas</creatorcontrib><creatorcontrib>Sankaranarayanan, Sriram</creatorcontrib><title>Mixed-integer bilevel representability</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We study the representability of sets by extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of polyhedra. Conversely, any finite union of polyhedra can be represented using any one of these three paradigms. We then prove that the feasible region of bilevel problems with integer variables exclusively in the upper level is a finite union of sets representable by mixed-integer programs and vice versa. Further, we prove that, up to topological closures, we do not get additional modeling power by allowing integer variables in the lower level as well. To establish the last statement, we prove that the family of sets that are finite unions of mixed-integer representable sets (up to topological closures) forms an algebra of sets; i.e., this family is closed under finite unions, intersections and complementation.</description><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Closures</subject><subject>Combinatorics</subject><subject>Constraint modelling</subject><subject>Formulations</subject><subject>Full Length Paper</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Intersections</subject><subject>Linear programming</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Mixed integer</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Polyhedra</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Unions</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFNB8BadyaZJ9ihFq1Dxouewm0xky7qtydbaf2_qCt7KMAwM770ZPsYuEW4QQN8mBATNAcvcUki-PWIjlIXiUkl1zEYAYsqnCuGUnaW0BAAsjBmx6-fmmzxvup7eKU7qpqUvaieR1pESdX2VN02_O2cnoWoTXfzNMXt7uH-dPfLFy_xpdrfgrpC654iqDMaUrhZeCl-F4JBQSXSV8t6gNwGFqYUUThcQNGkPriYZdP4GhS_G7GrIXcfV54ZSb5erTezySSukNvsq9UGVMCBQliCySgwqF1cpRQp2HZuPKu4sgt1TswM1m6nZX2p2m03FYEpZ3GUk_9EHXD_10W56</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Basu, Amitabh</creator><creator>Ryan, Christopher Thomas</creator><creator>Sankaranarayanan, Sriram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4662-3241</orcidid></search><sort><creationdate>20210101</creationdate><title>Mixed-integer bilevel representability</title><author>Basu, Amitabh ; Ryan, Christopher Thomas ; Sankaranarayanan, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1169f889cb2d42daffc1e1641ca6dd81d8f128b242c730f7e7d0cbe4f713812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Closures</topic><topic>Combinatorics</topic><topic>Constraint modelling</topic><topic>Formulations</topic><topic>Full Length Paper</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Intersections</topic><topic>Linear programming</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Mixed integer</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Polyhedra</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Amitabh</creatorcontrib><creatorcontrib>Ryan, Christopher Thomas</creatorcontrib><creatorcontrib>Sankaranarayanan, Sriram</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Amitabh</au><au>Ryan, Christopher Thomas</au><au>Sankaranarayanan, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-integer bilevel representability</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>185</volume><issue>1-2</issue><spage>163</spage><epage>197</epage><pages>163-197</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We study the representability of sets by extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of polyhedra. Conversely, any finite union of polyhedra can be represented using any one of these three paradigms. We then prove that the feasible region of bilevel problems with integer variables exclusively in the upper level is a finite union of sets representable by mixed-integer programs and vice versa. Further, we prove that, up to topological closures, we do not get additional modeling power by allowing integer variables in the lower level as well. To establish the last statement, we prove that the family of sets that are finite unions of mixed-integer representable sets (up to topological closures) forms an algebra of sets; i.e., this family is closed under finite unions, intersections and complementation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-019-01424-w</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-4662-3241</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2021-01, Vol.185 (1-2), p.163-197 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2478787897 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Applied mathematics Calculus of Variations and Optimal Control Optimization Closures Combinatorics Constraint modelling Formulations Full Length Paper Integer programming Integers Intersections Linear programming Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Optimization Polyhedra Theoretical Topology Unions |
title | Mixed-integer bilevel representability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-integer%20bilevel%20representability&rft.jtitle=Mathematical%20programming&rft.au=Basu,%20Amitabh&rft.date=2021-01-01&rft.volume=185&rft.issue=1-2&rft.spage=163&rft.epage=197&rft.pages=163-197&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-019-01424-w&rft_dat=%3Cproquest_cross%3E2478787897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280214902&rft_id=info:pmid/&rfr_iscdi=true |