A trust‐based hypervisor framework for preventing DDoS attacks in cloud
Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2021-02, Vol.33 (3), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Vetha, S. Vimala Devi, K. |
description | Summary
Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models. |
doi_str_mv | 10.1002/cpe.5279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478783918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478783918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxV8BEWvHhJ3dkkm82xtFULBQX1vGy3s5r-ycbdpCU3H8Fn9ElMrXjzNPPBjxn4CLkENgDG-I2pcJDyLD8iPUhjHjERJ8d_Oxen5CyEJWMALIYemQ5p7ZtQf318znXABX1rK_TbIjhPrdcb3Dm_orZLlcctlnVRvtLx2D1RXdfarAItSmrWrlmckxOr1wEvfmefvNxOnkf30ezhbjoaziLD8ziPRCJBzoVJdBcREoyZljxLhZ1nLMthAQKy1KbcSgEojWCQ6BRNaiVagUncJ1eHu5V37w2GWi1d48vupeJJJjMZ5yA7dX1QxrsQPFpV-WKjfauAqX1RqitK7YvqaHSgu2KN7b9OjR4nP_4b3EVpMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478783918</pqid></control><display><type>article</type><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><source>Wiley Online Library</source><creator>Vetha, S. ; Vimala Devi, K.</creator><creatorcontrib>Vetha, S. ; Vimala Devi, K.</creatorcontrib><description>Summary
Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5279</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bayesian analysis ; cloud computing system ; Denial of service attacks ; Distributed Denial‐of‐Service (DDoS) attack ; Elastic properties ; hypervisor ; Least Squares Support Vector Machine (LS‐SVM) ; objective trust ; Optimization ; Statistical inference ; Storage capacity ; Stress concentration ; subjective trust ; Support vector machines ; Virtual environments</subject><ispartof>Concurrency and computation, 2021-02, Vol.33 (3), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</citedby><cites>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</cites><orcidid>0000-0002-2728-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Vetha, S.</creatorcontrib><creatorcontrib>Vimala Devi, K.</creatorcontrib><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><title>Concurrency and computation</title><description>Summary
Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</description><subject>Bayesian analysis</subject><subject>cloud computing system</subject><subject>Denial of service attacks</subject><subject>Distributed Denial‐of‐Service (DDoS) attack</subject><subject>Elastic properties</subject><subject>hypervisor</subject><subject>Least Squares Support Vector Machine (LS‐SVM)</subject><subject>objective trust</subject><subject>Optimization</subject><subject>Statistical inference</subject><subject>Storage capacity</subject><subject>Stress concentration</subject><subject>subjective trust</subject><subject>Support vector machines</subject><subject>Virtual environments</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxV8BEWvHhJ3dkkm82xtFULBQX1vGy3s5r-ycbdpCU3H8Fn9ElMrXjzNPPBjxn4CLkENgDG-I2pcJDyLD8iPUhjHjERJ8d_Oxen5CyEJWMALIYemQ5p7ZtQf318znXABX1rK_TbIjhPrdcb3Dm_orZLlcctlnVRvtLx2D1RXdfarAItSmrWrlmckxOr1wEvfmefvNxOnkf30ezhbjoaziLD8ziPRCJBzoVJdBcREoyZljxLhZ1nLMthAQKy1KbcSgEojWCQ6BRNaiVagUncJ1eHu5V37w2GWi1d48vupeJJJjMZ5yA7dX1QxrsQPFpV-WKjfauAqX1RqitK7YvqaHSgu2KN7b9OjR4nP_4b3EVpMQ</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Vetha, S.</creator><creator>Vimala Devi, K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2728-562X</orcidid></search><sort><creationdate>20210210</creationdate><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><author>Vetha, S. ; Vimala Devi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>cloud computing system</topic><topic>Denial of service attacks</topic><topic>Distributed Denial‐of‐Service (DDoS) attack</topic><topic>Elastic properties</topic><topic>hypervisor</topic><topic>Least Squares Support Vector Machine (LS‐SVM)</topic><topic>objective trust</topic><topic>Optimization</topic><topic>Statistical inference</topic><topic>Storage capacity</topic><topic>Stress concentration</topic><topic>subjective trust</topic><topic>Support vector machines</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetha, S.</creatorcontrib><creatorcontrib>Vimala Devi, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetha, S.</au><au>Vimala Devi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</atitle><jtitle>Concurrency and computation</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5279</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2728-562X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-02, Vol.33 (3), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2478783918 |
source | Wiley Online Library |
subjects | Bayesian analysis cloud computing system Denial of service attacks Distributed Denial‐of‐Service (DDoS) attack Elastic properties hypervisor Least Squares Support Vector Machine (LS‐SVM) objective trust Optimization Statistical inference Storage capacity Stress concentration subjective trust Support vector machines Virtual environments |
title | A trust‐based hypervisor framework for preventing DDoS attacks in cloud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trust%E2%80%90based%20hypervisor%20framework%20for%20preventing%20DDoS%20attacks%20in%20cloud&rft.jtitle=Concurrency%20and%20computation&rft.au=Vetha,%20S.&rft.date=2021-02-10&rft.volume=33&rft.issue=3&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5279&rft_dat=%3Cproquest_cross%3E2478783918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478783918&rft_id=info:pmid/&rfr_iscdi=true |