A trust‐based hypervisor framework for preventing DDoS attacks in cloud

Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-02, Vol.33 (3), p.n/a
Hauptverfasser: Vetha, S., Vimala Devi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Concurrency and computation
container_volume 33
creator Vetha, S.
Vimala Devi, K.
description Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.
doi_str_mv 10.1002/cpe.5279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478783918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478783918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxV8BEWvHhJ3dkkm82xtFULBQX1vGy3s5r-ycbdpCU3H8Fn9ElMrXjzNPPBjxn4CLkENgDG-I2pcJDyLD8iPUhjHjERJ8d_Oxen5CyEJWMALIYemQ5p7ZtQf318znXABX1rK_TbIjhPrdcb3Dm_orZLlcctlnVRvtLx2D1RXdfarAItSmrWrlmckxOr1wEvfmefvNxOnkf30ezhbjoaziLD8ziPRCJBzoVJdBcREoyZljxLhZ1nLMthAQKy1KbcSgEojWCQ6BRNaiVagUncJ1eHu5V37w2GWi1d48vupeJJJjMZ5yA7dX1QxrsQPFpV-WKjfauAqX1RqitK7YvqaHSgu2KN7b9OjR4nP_4b3EVpMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478783918</pqid></control><display><type>article</type><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><source>Wiley Online Library</source><creator>Vetha, S. ; Vimala Devi, K.</creator><creatorcontrib>Vetha, S. ; Vimala Devi, K.</creatorcontrib><description>Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5279</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bayesian analysis ; cloud computing system ; Denial of service attacks ; Distributed Denial‐of‐Service (DDoS) attack ; Elastic properties ; hypervisor ; Least Squares Support Vector Machine (LS‐SVM) ; objective trust ; Optimization ; Statistical inference ; Storage capacity ; Stress concentration ; subjective trust ; Support vector machines ; Virtual environments</subject><ispartof>Concurrency and computation, 2021-02, Vol.33 (3), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</citedby><cites>FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</cites><orcidid>0000-0002-2728-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Vetha, S.</creatorcontrib><creatorcontrib>Vimala Devi, K.</creatorcontrib><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><title>Concurrency and computation</title><description>Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</description><subject>Bayesian analysis</subject><subject>cloud computing system</subject><subject>Denial of service attacks</subject><subject>Distributed Denial‐of‐Service (DDoS) attack</subject><subject>Elastic properties</subject><subject>hypervisor</subject><subject>Least Squares Support Vector Machine (LS‐SVM)</subject><subject>objective trust</subject><subject>Optimization</subject><subject>Statistical inference</subject><subject>Storage capacity</subject><subject>Stress concentration</subject><subject>subjective trust</subject><subject>Support vector machines</subject><subject>Virtual environments</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxV8BEWvHhJ3dkkm82xtFULBQX1vGy3s5r-ycbdpCU3H8Fn9ElMrXjzNPPBjxn4CLkENgDG-I2pcJDyLD8iPUhjHjERJ8d_Oxen5CyEJWMALIYemQ5p7ZtQf318znXABX1rK_TbIjhPrdcb3Dm_orZLlcctlnVRvtLx2D1RXdfarAItSmrWrlmckxOr1wEvfmefvNxOnkf30ezhbjoaziLD8ziPRCJBzoVJdBcREoyZljxLhZ1nLMthAQKy1KbcSgEojWCQ6BRNaiVagUncJ1eHu5V37w2GWi1d48vupeJJJjMZ5yA7dX1QxrsQPFpV-WKjfauAqX1RqitK7YvqaHSgu2KN7b9OjR4nP_4b3EVpMQ</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Vetha, S.</creator><creator>Vimala Devi, K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2728-562X</orcidid></search><sort><creationdate>20210210</creationdate><title>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</title><author>Vetha, S. ; Vimala Devi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-64818b6c4a293e14e30a82756fb70791d16175f52f861e8c6014a5ec5f8ef6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>cloud computing system</topic><topic>Denial of service attacks</topic><topic>Distributed Denial‐of‐Service (DDoS) attack</topic><topic>Elastic properties</topic><topic>hypervisor</topic><topic>Least Squares Support Vector Machine (LS‐SVM)</topic><topic>objective trust</topic><topic>Optimization</topic><topic>Statistical inference</topic><topic>Storage capacity</topic><topic>Stress concentration</topic><topic>subjective trust</topic><topic>Support vector machines</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetha, S.</creatorcontrib><creatorcontrib>Vimala Devi, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetha, S.</au><au>Vimala Devi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trust‐based hypervisor framework for preventing DDoS attacks in cloud</atitle><jtitle>Concurrency and computation</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Distributed Denial of Service (DDoS) attack is one of the major attacks that incur large financial loss in the cloud system. This motivated the research community to develop various detection techniques for controlling the effects of the DDoS attack. However, the existing techniques are not mature to satisfy the requirements of a cloud‐based attack detection system, as they manage the devious strategies that exploit the elastic and multi‐tenant properties of the cloud and ignore the resource constraints of the cloud system. This paper proposes a new solution that allows the hypervisor to establish trust‐based relationships towards the guest Virtual Machines (VMs). The Bayesian inference is applied to aggregate the objective and subjective trust sources. A trust‐based maximin game between DDoS attackers is designed. A hypervisor tries to maximize the attack minimization under a limited amount of resources. The game solution guides the hypervisor to determine the distribution of optimal detection load among VMs to improve the real‐time detection rate of DDoS attack. The Least Squares Support Vector Machine (LS‐SVM) classification is applied to classify the normal VMs and malicious VMs. The file is allocated to the VM based on the storage capacity of the VM. The experimental result shows that the proposed approach achieves high DDoS attack detection rate with minimum false positive and negative rate, when compared to the existing attack detection models.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5279</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2728-562X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-02, Vol.33 (3), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2478783918
source Wiley Online Library
subjects Bayesian analysis
cloud computing system
Denial of service attacks
Distributed Denial‐of‐Service (DDoS) attack
Elastic properties
hypervisor
Least Squares Support Vector Machine (LS‐SVM)
objective trust
Optimization
Statistical inference
Storage capacity
Stress concentration
subjective trust
Support vector machines
Virtual environments
title A trust‐based hypervisor framework for preventing DDoS attacks in cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trust%E2%80%90based%20hypervisor%20framework%20for%20preventing%20DDoS%20attacks%20in%20cloud&rft.jtitle=Concurrency%20and%20computation&rft.au=Vetha,%20S.&rft.date=2021-02-10&rft.volume=33&rft.issue=3&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5279&rft_dat=%3Cproquest_cross%3E2478783918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478783918&rft_id=info:pmid/&rfr_iscdi=true