Technologies for the automated collection of heat stress data in sheep

The automated collection of phenotypic measurements in livestock is becoming increasingly important to both researchers and farmers. The capacity to non-invasively collect real-time data, provides the opportunity to better understand livestock behaviour and physiology and improve animal management d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal biotelemetry 2021-01, Vol.9 (1), p.1-15, Article 4
Hauptverfasser: Lewis Baida, Bobbie E, Swinbourne, Alyce M, Barwick, Jamie, Leu, Stephan T, van Wettere, William H. E. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Animal biotelemetry
container_volume 9
creator Lewis Baida, Bobbie E
Swinbourne, Alyce M
Barwick, Jamie
Leu, Stephan T
van Wettere, William H. E. J
description The automated collection of phenotypic measurements in livestock is becoming increasingly important to both researchers and farmers. The capacity to non-invasively collect real-time data, provides the opportunity to better understand livestock behaviour and physiology and improve animal management decisions. Current climate models project that temperatures will increase across the world, influencing both local and global agriculture. Sheep that are exposed to high ambient temperatures experience heat stress and their physiology, reproductive function and performance are compromised. Body temperature is a reliable measure of heat stress and hence a good indicator of an animals’ health and well-being. Non-invasive temperature-sensing technologies have made substantial progress over the past decade. Here, we review the different technologies available and assess their suitability for inferring ovine heat stress. Specifically, the use of indwelling probes, intra-ruminal bolus insertion, thermal imaging and implantable devices are investigated. We further evaluate the capacity of behavioural tracking technology, such as global positioning systems, to identify heat stressed individuals based on the exhibition of specific behaviours. Although there are challenges associated with using real-time thermosensing data to make informed management decisions, these technologies provide new opportunities to manage heat stress in sheep. In order to obtain accurate real-time information of individual animals and facilitate prompt intervention, data collection should be entirely automated. Additionally, for accurate interpretation on-farm, the development of software which can effectively collect, manage and integrate data for sheep producer’s needs to be prioritised. Lastly, understanding known physiological thresholds will allow farmers to determine individual heat stress risk and facilitate early intervention to reduce the effects in both current and subsequent generations.
doi_str_mv 10.1186/s40317-020-00225-9
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2478763902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650597111</galeid><doaj_id>oai_doaj_org_article_2a9680f682e140b4b3ca4c425882ff43</doaj_id><sourcerecordid>A650597111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-9fa8fde97150eaac80be18e59bbfa92eed9194a9f15cd9df730b0b15924ebaaa3</originalsourceid><addsrcrecordid>eNptUU1rHDEMHUILCdv8gZ4MPU8qf83YxxCaJhDoJT0bjUfe9TI73treQ_993WxJG6h0kBDvPSS9rvvI4YZzM3wuCiQfexDQAwihe3vRXQnQ0Etp9Lt_-svuupQ9tLCcSyuvuvtn8rs1LWkbqbCQMqs7Yniq6YCVZubTspCvMa0sBbYjrKzUTKWwGSuyuLKyIzp-6N4HXApd_6mb7vv9l-e7h_7p29fHu9un3istam8DmjCTHbkGQvQGJuKGtJ2mgFYQzZZbhTZw7Wc7h1HCBBPXViiaEFFuusez7pxw7445HjD_dAmjexmkvHWYa_QLOYF2MBAGI4grmNQkPSqvhDZGhKBk0_p01jrm9ONEpbp9OuW1re-EGs04SAviL2qLTTSuIdWM_hCLd7eDBt1uaa_cdDf_QbWc6RB9WinENn9DEGeCz6mUTOH1GA7ut6vu7KprrroXV52VvwBCdpLj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478763902</pqid></control><display><type>article</type><title>Technologies for the automated collection of heat stress data in sheep</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lewis Baida, Bobbie E ; Swinbourne, Alyce M ; Barwick, Jamie ; Leu, Stephan T ; van Wettere, William H. E. J</creator><creatorcontrib>Lewis Baida, Bobbie E ; Swinbourne, Alyce M ; Barwick, Jamie ; Leu, Stephan T ; van Wettere, William H. E. J</creatorcontrib><description>The automated collection of phenotypic measurements in livestock is becoming increasingly important to both researchers and farmers. The capacity to non-invasively collect real-time data, provides the opportunity to better understand livestock behaviour and physiology and improve animal management decisions. Current climate models project that temperatures will increase across the world, influencing both local and global agriculture. Sheep that are exposed to high ambient temperatures experience heat stress and their physiology, reproductive function and performance are compromised. Body temperature is a reliable measure of heat stress and hence a good indicator of an animals’ health and well-being. Non-invasive temperature-sensing technologies have made substantial progress over the past decade. Here, we review the different technologies available and assess their suitability for inferring ovine heat stress. Specifically, the use of indwelling probes, intra-ruminal bolus insertion, thermal imaging and implantable devices are investigated. We further evaluate the capacity of behavioural tracking technology, such as global positioning systems, to identify heat stressed individuals based on the exhibition of specific behaviours. Although there are challenges associated with using real-time thermosensing data to make informed management decisions, these technologies provide new opportunities to manage heat stress in sheep. In order to obtain accurate real-time information of individual animals and facilitate prompt intervention, data collection should be entirely automated. Additionally, for accurate interpretation on-farm, the development of software which can effectively collect, manage and integrate data for sheep producer’s needs to be prioritised. Lastly, understanding known physiological thresholds will allow farmers to determine individual heat stress risk and facilitate early intervention to reduce the effects in both current and subsequent generations.</description><identifier>ISSN: 2050-3385</identifier><identifier>EISSN: 2050-3385</identifier><identifier>DOI: 10.1186/s40317-020-00225-9</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Animal reproduction ; Body temperature ; Cattle ; Climate change ; Data collection ; Global positioning systems ; GPS ; Heat ; Heat stress ; Humidity ; Livestock ; Livestock monitoring ; Physiology ; Productivity ; Remote sensing ; Remote temperature ; Respiration ; Sensors ; Sheep ; Technology application ; Telemetry ; Temperature data logger ; Thermoregulation ; Vagina</subject><ispartof>Animal biotelemetry, 2021-01, Vol.9 (1), p.1-15, Article 4</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-9fa8fde97150eaac80be18e59bbfa92eed9194a9f15cd9df730b0b15924ebaaa3</citedby><cites>FETCH-LOGICAL-c452t-9fa8fde97150eaac80be18e59bbfa92eed9194a9f15cd9df730b0b15924ebaaa3</cites><orcidid>0000-0003-2547-5056 ; 0000-0001-8176-4122 ; 0000-0002-6267-6562 ; 0000-0003-0905-8527 ; 0000-0002-1557-4264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Lewis Baida, Bobbie E</creatorcontrib><creatorcontrib>Swinbourne, Alyce M</creatorcontrib><creatorcontrib>Barwick, Jamie</creatorcontrib><creatorcontrib>Leu, Stephan T</creatorcontrib><creatorcontrib>van Wettere, William H. E. J</creatorcontrib><title>Technologies for the automated collection of heat stress data in sheep</title><title>Animal biotelemetry</title><description>The automated collection of phenotypic measurements in livestock is becoming increasingly important to both researchers and farmers. The capacity to non-invasively collect real-time data, provides the opportunity to better understand livestock behaviour and physiology and improve animal management decisions. Current climate models project that temperatures will increase across the world, influencing both local and global agriculture. Sheep that are exposed to high ambient temperatures experience heat stress and their physiology, reproductive function and performance are compromised. Body temperature is a reliable measure of heat stress and hence a good indicator of an animals’ health and well-being. Non-invasive temperature-sensing technologies have made substantial progress over the past decade. Here, we review the different technologies available and assess their suitability for inferring ovine heat stress. Specifically, the use of indwelling probes, intra-ruminal bolus insertion, thermal imaging and implantable devices are investigated. We further evaluate the capacity of behavioural tracking technology, such as global positioning systems, to identify heat stressed individuals based on the exhibition of specific behaviours. Although there are challenges associated with using real-time thermosensing data to make informed management decisions, these technologies provide new opportunities to manage heat stress in sheep. In order to obtain accurate real-time information of individual animals and facilitate prompt intervention, data collection should be entirely automated. Additionally, for accurate interpretation on-farm, the development of software which can effectively collect, manage and integrate data for sheep producer’s needs to be prioritised. Lastly, understanding known physiological thresholds will allow farmers to determine individual heat stress risk and facilitate early intervention to reduce the effects in both current and subsequent generations.</description><subject>Animal reproduction</subject><subject>Body temperature</subject><subject>Cattle</subject><subject>Climate change</subject><subject>Data collection</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Humidity</subject><subject>Livestock</subject><subject>Livestock monitoring</subject><subject>Physiology</subject><subject>Productivity</subject><subject>Remote sensing</subject><subject>Remote temperature</subject><subject>Respiration</subject><subject>Sensors</subject><subject>Sheep</subject><subject>Technology application</subject><subject>Telemetry</subject><subject>Temperature data logger</subject><subject>Thermoregulation</subject><subject>Vagina</subject><issn>2050-3385</issn><issn>2050-3385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rHDEMHUILCdv8gZ4MPU8qf83YxxCaJhDoJT0bjUfe9TI73treQ_993WxJG6h0kBDvPSS9rvvI4YZzM3wuCiQfexDQAwihe3vRXQnQ0Etp9Lt_-svuupQ9tLCcSyuvuvtn8rs1LWkbqbCQMqs7Yniq6YCVZubTspCvMa0sBbYjrKzUTKWwGSuyuLKyIzp-6N4HXApd_6mb7vv9l-e7h_7p29fHu9un3istam8DmjCTHbkGQvQGJuKGtJ2mgFYQzZZbhTZw7Wc7h1HCBBPXViiaEFFuusez7pxw7445HjD_dAmjexmkvHWYa_QLOYF2MBAGI4grmNQkPSqvhDZGhKBk0_p01jrm9ONEpbp9OuW1re-EGs04SAviL2qLTTSuIdWM_hCLd7eDBt1uaa_cdDf_QbWc6RB9WinENn9DEGeCz6mUTOH1GA7ut6vu7KprrroXV52VvwBCdpLj</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Lewis Baida, Bobbie E</creator><creator>Swinbourne, Alyce M</creator><creator>Barwick, Jamie</creator><creator>Leu, Stephan T</creator><creator>van Wettere, William H. E. J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2547-5056</orcidid><orcidid>https://orcid.org/0000-0001-8176-4122</orcidid><orcidid>https://orcid.org/0000-0002-6267-6562</orcidid><orcidid>https://orcid.org/0000-0003-0905-8527</orcidid><orcidid>https://orcid.org/0000-0002-1557-4264</orcidid></search><sort><creationdate>20210107</creationdate><title>Technologies for the automated collection of heat stress data in sheep</title><author>Lewis Baida, Bobbie E ; Swinbourne, Alyce M ; Barwick, Jamie ; Leu, Stephan T ; van Wettere, William H. E. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-9fa8fde97150eaac80be18e59bbfa92eed9194a9f15cd9df730b0b15924ebaaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal reproduction</topic><topic>Body temperature</topic><topic>Cattle</topic><topic>Climate change</topic><topic>Data collection</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Humidity</topic><topic>Livestock</topic><topic>Livestock monitoring</topic><topic>Physiology</topic><topic>Productivity</topic><topic>Remote sensing</topic><topic>Remote temperature</topic><topic>Respiration</topic><topic>Sensors</topic><topic>Sheep</topic><topic>Technology application</topic><topic>Telemetry</topic><topic>Temperature data logger</topic><topic>Thermoregulation</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis Baida, Bobbie E</creatorcontrib><creatorcontrib>Swinbourne, Alyce M</creatorcontrib><creatorcontrib>Barwick, Jamie</creatorcontrib><creatorcontrib>Leu, Stephan T</creatorcontrib><creatorcontrib>van Wettere, William H. E. J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Animal biotelemetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis Baida, Bobbie E</au><au>Swinbourne, Alyce M</au><au>Barwick, Jamie</au><au>Leu, Stephan T</au><au>van Wettere, William H. E. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technologies for the automated collection of heat stress data in sheep</atitle><jtitle>Animal biotelemetry</jtitle><date>2021-01-07</date><risdate>2021</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>4</artnum><issn>2050-3385</issn><eissn>2050-3385</eissn><abstract>The automated collection of phenotypic measurements in livestock is becoming increasingly important to both researchers and farmers. The capacity to non-invasively collect real-time data, provides the opportunity to better understand livestock behaviour and physiology and improve animal management decisions. Current climate models project that temperatures will increase across the world, influencing both local and global agriculture. Sheep that are exposed to high ambient temperatures experience heat stress and their physiology, reproductive function and performance are compromised. Body temperature is a reliable measure of heat stress and hence a good indicator of an animals’ health and well-being. Non-invasive temperature-sensing technologies have made substantial progress over the past decade. Here, we review the different technologies available and assess their suitability for inferring ovine heat stress. Specifically, the use of indwelling probes, intra-ruminal bolus insertion, thermal imaging and implantable devices are investigated. We further evaluate the capacity of behavioural tracking technology, such as global positioning systems, to identify heat stressed individuals based on the exhibition of specific behaviours. Although there are challenges associated with using real-time thermosensing data to make informed management decisions, these technologies provide new opportunities to manage heat stress in sheep. In order to obtain accurate real-time information of individual animals and facilitate prompt intervention, data collection should be entirely automated. Additionally, for accurate interpretation on-farm, the development of software which can effectively collect, manage and integrate data for sheep producer’s needs to be prioritised. Lastly, understanding known physiological thresholds will allow farmers to determine individual heat stress risk and facilitate early intervention to reduce the effects in both current and subsequent generations.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><doi>10.1186/s40317-020-00225-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2547-5056</orcidid><orcidid>https://orcid.org/0000-0001-8176-4122</orcidid><orcidid>https://orcid.org/0000-0002-6267-6562</orcidid><orcidid>https://orcid.org/0000-0003-0905-8527</orcidid><orcidid>https://orcid.org/0000-0002-1557-4264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-3385
ispartof Animal biotelemetry, 2021-01, Vol.9 (1), p.1-15, Article 4
issn 2050-3385
2050-3385
language eng
recordid cdi_proquest_journals_2478763902
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Animal reproduction
Body temperature
Cattle
Climate change
Data collection
Global positioning systems
GPS
Heat
Heat stress
Humidity
Livestock
Livestock monitoring
Physiology
Productivity
Remote sensing
Remote temperature
Respiration
Sensors
Sheep
Technology application
Telemetry
Temperature data logger
Thermoregulation
Vagina
title Technologies for the automated collection of heat stress data in sheep
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technologies%20for%20the%20automated%20collection%20of%20heat%20stress%20data%20in%20sheep&rft.jtitle=Animal%20biotelemetry&rft.au=Lewis%20Baida,%20Bobbie%20E&rft.date=2021-01-07&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=4&rft.issn=2050-3385&rft.eissn=2050-3385&rft_id=info:doi/10.1186/s40317-020-00225-9&rft_dat=%3Cgale_doaj_%3EA650597111%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478763902&rft_id=info:pmid/&rft_galeid=A650597111&rft_doaj_id=oai_doaj_org_article_2a9680f682e140b4b3ca4c425882ff43&rfr_iscdi=true