Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets
The use of microfluidics has benefitted numerous scientific disciplines towards further advancements in sectors such as plant and pollution monitoring, diagnostic systems, detection of pathogenic microorganisms, and detection of harmful substances. Advancements in scientific disciplines are achieved...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2021-02, Vol.25 (2), Article 12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Microfluidics and nanofluidics |
container_volume | 25 |
creator | Leclerc, Camille A. Williams, Stephanie Powe, Candace Zepp, Noah Lipworth, Daniel Pensini, Erica Collier, Christopher M. |
description | The use of microfluidics has benefitted numerous scientific disciplines towards further advancements in sectors such as plant and pollution monitoring, diagnostic systems, detection of pathogenic microorganisms, and detection of harmful substances. Advancements in scientific disciplines are achieved when researchers have access to required materials and equipment. This is true of microfluidic technologies. However, an on-going challenge to widespread access to microfluidic technologies is the expense and complexity of microfluidic fabrication systems. In the last decade, numerous efforts have been realized for the development of microfluidic fabrication methods that do not require a cleanroom facility and other expensive equipment. These fabrication methods typically have varying parameters and restrictions that inhibit the speed of fabrication and customization of microfluidic chip features. The following work explores a straightforward method for rapid fabrication of microfluidic chip systems using a combination of stressed polystyrene sheets and computerized micromilling. A quantitative analysis of the anisotropic shrinking properties of the stressed polystyrene sheet is completed with experimentation on various geometric features. These experiments will aid in future use of this technology. The proposed fabrication method can inexpensively fabricate a flow-based microfluidic gradient mixer in under an hour with inexpensive fabrication equipment. |
doi_str_mv | 10.1007/s10404-020-02414-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478670173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478670173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-1ed77d9b992415e39668cfd5da88f2e35d9929730212abc057a3abb8a63421143</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYsoOI6-gKuA62r-2rRLGfyDAUF0HTJNOpOxTWpuKsyT-Lpm7KA7FyEh95zvcjhZdknwNcFY3ADBHPMcU5wOJzwXR9mMlITlvK7x8e-7oqfZGcAWYy4owbPs60UNViNtwK4dUk6jIfjo426wbo18i3rbBN92o9W2Qc3GDoA-rUKN74cxmoDc2JtgG9WlLxeD7yZHb7tuT9gTlbPg02hIBNgE694PbIjBAJi003c7iLtgnEkKYyKcZyet6sBcHO559nZ_97p4zJfPD0-L22XesKKMOTFaCF2v6jqlLgyry7JqWl1oVVUtNazQaVILhimhatXgQiimVqtKlYxTQjibZ1cTN8X-GA1EufVjcGmlpFxUpcBEsKSikyolAwimlUOwvQo7SbDcFyCnAmQqQP4UIEUysckESezWJvyh_3F9A19djNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478670173</pqid></control><display><type>article</type><title>Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets</title><source>Springer Nature - Complete Springer Journals</source><creator>Leclerc, Camille A. ; Williams, Stephanie ; Powe, Candace ; Zepp, Noah ; Lipworth, Daniel ; Pensini, Erica ; Collier, Christopher M.</creator><creatorcontrib>Leclerc, Camille A. ; Williams, Stephanie ; Powe, Candace ; Zepp, Noah ; Lipworth, Daniel ; Pensini, Erica ; Collier, Christopher M.</creatorcontrib><description>The use of microfluidics has benefitted numerous scientific disciplines towards further advancements in sectors such as plant and pollution monitoring, diagnostic systems, detection of pathogenic microorganisms, and detection of harmful substances. Advancements in scientific disciplines are achieved when researchers have access to required materials and equipment. This is true of microfluidic technologies. However, an on-going challenge to widespread access to microfluidic technologies is the expense and complexity of microfluidic fabrication systems. In the last decade, numerous efforts have been realized for the development of microfluidic fabrication methods that do not require a cleanroom facility and other expensive equipment. These fabrication methods typically have varying parameters and restrictions that inhibit the speed of fabrication and customization of microfluidic chip features. The following work explores a straightforward method for rapid fabrication of microfluidic chip systems using a combination of stressed polystyrene sheets and computerized micromilling. A quantitative analysis of the anisotropic shrinking properties of the stressed polystyrene sheet is completed with experimentation on various geometric features. These experiments will aid in future use of this technology. The proposed fabrication method can inexpensively fabricate a flow-based microfluidic gradient mixer in under an hour with inexpensive fabrication equipment.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-020-02414-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Access ; Analytical Chemistry ; Anisotropy ; Biomedical Engineering and Bioengineering ; Cleanrooms ; Detection ; Diagnostic systems ; Engineering ; Engineering Fluid Dynamics ; Environmental monitoring ; Experimentation ; Fabrication ; Integrated circuits ; Methods ; Microfluidics ; Microorganisms ; Nanotechnology and Microengineering ; Numerical controls ; Pathogens ; Pollution detection ; Pollution monitoring ; Polystyrene ; Polystyrene resins ; Prototyping ; Research Paper ; Sheets</subject><ispartof>Microfluidics and nanofluidics, 2021-02, Vol.25 (2), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-1ed77d9b992415e39668cfd5da88f2e35d9929730212abc057a3abb8a63421143</citedby><cites>FETCH-LOGICAL-c356t-1ed77d9b992415e39668cfd5da88f2e35d9929730212abc057a3abb8a63421143</cites><orcidid>0000-0002-1760-341X ; 0000-0002-9269-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-020-02414-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-020-02414-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Leclerc, Camille A.</creatorcontrib><creatorcontrib>Williams, Stephanie</creatorcontrib><creatorcontrib>Powe, Candace</creatorcontrib><creatorcontrib>Zepp, Noah</creatorcontrib><creatorcontrib>Lipworth, Daniel</creatorcontrib><creatorcontrib>Pensini, Erica</creatorcontrib><creatorcontrib>Collier, Christopher M.</creatorcontrib><title>Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The use of microfluidics has benefitted numerous scientific disciplines towards further advancements in sectors such as plant and pollution monitoring, diagnostic systems, detection of pathogenic microorganisms, and detection of harmful substances. Advancements in scientific disciplines are achieved when researchers have access to required materials and equipment. This is true of microfluidic technologies. However, an on-going challenge to widespread access to microfluidic technologies is the expense and complexity of microfluidic fabrication systems. In the last decade, numerous efforts have been realized for the development of microfluidic fabrication methods that do not require a cleanroom facility and other expensive equipment. These fabrication methods typically have varying parameters and restrictions that inhibit the speed of fabrication and customization of microfluidic chip features. The following work explores a straightforward method for rapid fabrication of microfluidic chip systems using a combination of stressed polystyrene sheets and computerized micromilling. A quantitative analysis of the anisotropic shrinking properties of the stressed polystyrene sheet is completed with experimentation on various geometric features. These experiments will aid in future use of this technology. The proposed fabrication method can inexpensively fabricate a flow-based microfluidic gradient mixer in under an hour with inexpensive fabrication equipment.</description><subject>Access</subject><subject>Analytical Chemistry</subject><subject>Anisotropy</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cleanrooms</subject><subject>Detection</subject><subject>Diagnostic systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental monitoring</subject><subject>Experimentation</subject><subject>Fabrication</subject><subject>Integrated circuits</subject><subject>Methods</subject><subject>Microfluidics</subject><subject>Microorganisms</subject><subject>Nanotechnology and Microengineering</subject><subject>Numerical controls</subject><subject>Pathogens</subject><subject>Pollution detection</subject><subject>Pollution monitoring</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Prototyping</subject><subject>Research Paper</subject><subject>Sheets</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KxDAUhYsoOI6-gKuA62r-2rRLGfyDAUF0HTJNOpOxTWpuKsyT-Lpm7KA7FyEh95zvcjhZdknwNcFY3ADBHPMcU5wOJzwXR9mMlITlvK7x8e-7oqfZGcAWYy4owbPs60UNViNtwK4dUk6jIfjo426wbo18i3rbBN92o9W2Qc3GDoA-rUKN74cxmoDc2JtgG9WlLxeD7yZHb7tuT9gTlbPg02hIBNgE694PbIjBAJi003c7iLtgnEkKYyKcZyet6sBcHO559nZ_97p4zJfPD0-L22XesKKMOTFaCF2v6jqlLgyry7JqWl1oVVUtNazQaVILhimhatXgQiimVqtKlYxTQjibZ1cTN8X-GA1EufVjcGmlpFxUpcBEsKSikyolAwimlUOwvQo7SbDcFyCnAmQqQP4UIEUysckESezWJvyh_3F9A19djNI</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Leclerc, Camille A.</creator><creator>Williams, Stephanie</creator><creator>Powe, Candace</creator><creator>Zepp, Noah</creator><creator>Lipworth, Daniel</creator><creator>Pensini, Erica</creator><creator>Collier, Christopher M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1760-341X</orcidid><orcidid>https://orcid.org/0000-0002-9269-100X</orcidid></search><sort><creationdate>20210201</creationdate><title>Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets</title><author>Leclerc, Camille A. ; Williams, Stephanie ; Powe, Candace ; Zepp, Noah ; Lipworth, Daniel ; Pensini, Erica ; Collier, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-1ed77d9b992415e39668cfd5da88f2e35d9929730212abc057a3abb8a63421143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Access</topic><topic>Analytical Chemistry</topic><topic>Anisotropy</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cleanrooms</topic><topic>Detection</topic><topic>Diagnostic systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental monitoring</topic><topic>Experimentation</topic><topic>Fabrication</topic><topic>Integrated circuits</topic><topic>Methods</topic><topic>Microfluidics</topic><topic>Microorganisms</topic><topic>Nanotechnology and Microengineering</topic><topic>Numerical controls</topic><topic>Pathogens</topic><topic>Pollution detection</topic><topic>Pollution monitoring</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Prototyping</topic><topic>Research Paper</topic><topic>Sheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Camille A.</creatorcontrib><creatorcontrib>Williams, Stephanie</creatorcontrib><creatorcontrib>Powe, Candace</creatorcontrib><creatorcontrib>Zepp, Noah</creatorcontrib><creatorcontrib>Lipworth, Daniel</creatorcontrib><creatorcontrib>Pensini, Erica</creatorcontrib><creatorcontrib>Collier, Christopher M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leclerc, Camille A.</au><au>Williams, Stephanie</au><au>Powe, Candace</au><au>Zepp, Noah</au><au>Lipworth, Daniel</au><au>Pensini, Erica</au><au>Collier, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><artnum>12</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The use of microfluidics has benefitted numerous scientific disciplines towards further advancements in sectors such as plant and pollution monitoring, diagnostic systems, detection of pathogenic microorganisms, and detection of harmful substances. Advancements in scientific disciplines are achieved when researchers have access to required materials and equipment. This is true of microfluidic technologies. However, an on-going challenge to widespread access to microfluidic technologies is the expense and complexity of microfluidic fabrication systems. In the last decade, numerous efforts have been realized for the development of microfluidic fabrication methods that do not require a cleanroom facility and other expensive equipment. These fabrication methods typically have varying parameters and restrictions that inhibit the speed of fabrication and customization of microfluidic chip features. The following work explores a straightforward method for rapid fabrication of microfluidic chip systems using a combination of stressed polystyrene sheets and computerized micromilling. A quantitative analysis of the anisotropic shrinking properties of the stressed polystyrene sheet is completed with experimentation on various geometric features. These experiments will aid in future use of this technology. The proposed fabrication method can inexpensively fabricate a flow-based microfluidic gradient mixer in under an hour with inexpensive fabrication equipment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-020-02414-7</doi><orcidid>https://orcid.org/0000-0002-1760-341X</orcidid><orcidid>https://orcid.org/0000-0002-9269-100X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2021-02, Vol.25 (2), Article 12 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_2478670173 |
source | Springer Nature - Complete Springer Journals |
subjects | Access Analytical Chemistry Anisotropy Biomedical Engineering and Bioengineering Cleanrooms Detection Diagnostic systems Engineering Engineering Fluid Dynamics Environmental monitoring Experimentation Fabrication Integrated circuits Methods Microfluidics Microorganisms Nanotechnology and Microengineering Numerical controls Pathogens Pollution detection Pollution monitoring Polystyrene Polystyrene resins Prototyping Research Paper Sheets |
title | Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20design%20and%20prototyping%20of%20microfluidic%20chips%20via%20computer%20numerical%20control%20micromilling%20and%20anisotropic%20shrinking%20of%20stressed%20polystyrene%20sheets&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Leclerc,%20Camille%20A.&rft.date=2021-02-01&rft.volume=25&rft.issue=2&rft.artnum=12&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-020-02414-7&rft_dat=%3Cproquest_cross%3E2478670173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478670173&rft_id=info:pmid/&rfr_iscdi=true |