Sensitivity analysis for set-valued equilibrium problems
In the paper, we mention a parametrized vector equilibrium problem via sum of two given set-valued maps, considered as a unified model of some problems in variational analysis and optimization. Then, we study sensitivity analysis for this problem in terms of the second-order contingent derivatives....
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2021-02, Vol.25 (1), p.31-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 25 |
creator | Anh, Nguyen Le Hoang Linh, Ha Manh |
description | In the paper, we mention a parametrized vector equilibrium problem via sum of two given set-valued maps, considered as a unified model of some problems in variational analysis and optimization. Then, we study sensitivity analysis for this problem in terms of the second-order contingent derivatives. Finally, corresponding results for special cases are implied. |
doi_str_mv | 10.1007/s11117-020-00748-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478662493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478662493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7aab78902a7b46e3fb3800d6cce92c91e78c0ba0cc5cdbccd917e26f95c19c203</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKsG19FK-pFkKYMvGHChrkOSTkuGfsykugf674224M7aVBXcc6u4hFwzuGUA4g5ZKkGBA01rIak8IStWCk4Vl-w0zbksKeOKn5MLxB1AwgpYEfnmewxjOIZxzkxv2hkDZs0QM_QjPZp28nXmD1Nog41h6rJ9HGzrO7wkZ41p0V_99jX5eHx43zzT7evTy-Z-Sx0XMFJhjBVSATfCFpXPG5tLgLpyzivuFPNCOrAGnCtdbZ2rFROeV40qHVOOQ74mN4tvOnyYPI56N0wxPYqaF0JWFS9UnlR8Ubk4IEbf6H0MnYmzZqC_E9JLQjolpH8S0jJB-QJhEvefPv5Z_0N9AUR6aaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478662493</pqid></control><display><type>article</type><title>Sensitivity analysis for set-valued equilibrium problems</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Anh, Nguyen Le Hoang ; Linh, Ha Manh</creator><creatorcontrib>Anh, Nguyen Le Hoang ; Linh, Ha Manh</creatorcontrib><description>In the paper, we mention a parametrized vector equilibrium problem via sum of two given set-valued maps, considered as a unified model of some problems in variational analysis and optimization. Then, we study sensitivity analysis for this problem in terms of the second-order contingent derivatives. Finally, corresponding results for special cases are implied.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-020-00748-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Optimization ; Potential Theory ; Sensitivity analysis</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-02, Vol.25 (1), p.31-48</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7aab78902a7b46e3fb3800d6cce92c91e78c0ba0cc5cdbccd917e26f95c19c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-020-00748-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-020-00748-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Anh, Nguyen Le Hoang</creatorcontrib><creatorcontrib>Linh, Ha Manh</creatorcontrib><title>Sensitivity analysis for set-valued equilibrium problems</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In the paper, we mention a parametrized vector equilibrium problem via sum of two given set-valued maps, considered as a unified model of some problems in variational analysis and optimization. Then, we study sensitivity analysis for this problem in terms of the second-order contingent derivatives. Finally, corresponding results for special cases are implied.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Optimization</subject><subject>Potential Theory</subject><subject>Sensitivity analysis</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKBDEQRYMoOI7-gKsG19FK-pFkKYMvGHChrkOSTkuGfsykugf674224M7aVBXcc6u4hFwzuGUA4g5ZKkGBA01rIak8IStWCk4Vl-w0zbksKeOKn5MLxB1AwgpYEfnmewxjOIZxzkxv2hkDZs0QM_QjPZp28nXmD1Nog41h6rJ9HGzrO7wkZ41p0V_99jX5eHx43zzT7evTy-Z-Sx0XMFJhjBVSATfCFpXPG5tLgLpyzivuFPNCOrAGnCtdbZ2rFROeV40qHVOOQ74mN4tvOnyYPI56N0wxPYqaF0JWFS9UnlR8Ubk4IEbf6H0MnYmzZqC_E9JLQjolpH8S0jJB-QJhEvefPv5Z_0N9AUR6aaY</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Anh, Nguyen Le Hoang</creator><creator>Linh, Ha Manh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210201</creationdate><title>Sensitivity analysis for set-valued equilibrium problems</title><author>Anh, Nguyen Le Hoang ; Linh, Ha Manh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7aab78902a7b46e3fb3800d6cce92c91e78c0ba0cc5cdbccd917e26f95c19c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Optimization</topic><topic>Potential Theory</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, Nguyen Le Hoang</creatorcontrib><creatorcontrib>Linh, Ha Manh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, Nguyen Le Hoang</au><au>Linh, Ha Manh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis for set-valued equilibrium problems</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In the paper, we mention a parametrized vector equilibrium problem via sum of two given set-valued maps, considered as a unified model of some problems in variational analysis and optimization. Then, we study sensitivity analysis for this problem in terms of the second-order contingent derivatives. Finally, corresponding results for special cases are implied.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-020-00748-8</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-02, Vol.25 (1), p.31-48 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2478662493 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization Econometrics Fourier Analysis Mathematics Mathematics and Statistics Operator Theory Optimization Potential Theory Sensitivity analysis |
title | Sensitivity analysis for set-valued equilibrium problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20for%20set-valued%20equilibrium%20problems&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Anh,%20Nguyen%20Le%20Hoang&rft.date=2021-02-01&rft.volume=25&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-020-00748-8&rft_dat=%3Cproquest_cross%3E2478662493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478662493&rft_id=info:pmid/&rfr_iscdi=true |