XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches

Cobalt doped Zinc Oxide (Zn1-xCoxO) (x = 0.03) nanoparticles have been synthesized by chemical co-precipitation method at room temperature and characterized by X-ray diffraction (XRD) study. The XRD pattern indicates that Co doped ZnO NPs are with hexagonal wurtzite geometry and diffraction peaks ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2020-10, Vol.595, p.412342, Article 412342
Hauptverfasser: Shunmuga Sundaram, P., Sangeetha, T., Rajakarthihan, S., Vijayalaksmi, R., Elangovan, A., Arivazhagan, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 412342
container_title Physica. B, Condensed matter
container_volume 595
creator Shunmuga Sundaram, P.
Sangeetha, T.
Rajakarthihan, S.
Vijayalaksmi, R.
Elangovan, A.
Arivazhagan, G.
description Cobalt doped Zinc Oxide (Zn1-xCoxO) (x = 0.03) nanoparticles have been synthesized by chemical co-precipitation method at room temperature and characterized by X-ray diffraction (XRD) study. The XRD pattern indicates that Co doped ZnO NPs are with hexagonal wurtzite geometry and diffraction peaks get shifted to higher angles which is the characteristic influence of dopant Co that has an ionic radius smaller than the host cation. The true values of lattice constants have been calculated using Nelson–Riley Function. Crystallite size calculated using Scherrer formula has been compared with that estimated by uniform deformation (UDM), uniform stress deformation (USDM) and uniform deformation energy density (UDEDM) models of Williamson – Hall method, and also by size-strain plot (SSP) method. The lattice strain has also been calculated. The surface morphology and elemental analysis of the product have been characterized by field emission scanning electron microscopy (FESEM) and energy dispersive (EDAX) spectra.
doi_str_mv 10.1016/j.physb.2020.412342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478622039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452620303537</els_id><sourcerecordid>2478622039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-fcc8315db067ac6b78206acb90e3f72eb990bcbcedb02624489c16f4f11824a73</originalsourceid><addsrcrecordid>eNp9kctOAyEYhYnRxFp9Ajckrqdymc7FxIWpl5o0MTEa3RFgmJSGAgJjbB_E55Va17L5WZzvHPgPAOcYTTDC1eVq4pebKCYEETQpMaElOQAj3NS0IJhOD8EItQQX5ZRUx-AkxhXKB9d4BL7fn29hTGGQaQjc5OvQaRWhs1A6wU2CnfOqg1ttJXRfulPQcus8D0lLk4VxY9NSRb3NIrHJkA9Kaq8TTzqbrFVauu4KvmljNF9HZ4s5NwZy28EdVORsri30xiXIvQ-Oy2x3Co56bqI6-5tj8Hp_9zKbF4unh8fZzaKQlOJU9FI2FE87gaqay0rUDUEVl6JFivY1UaJtkZBCqqwgFSnLppW46sse44aUvKZjcLH3zcEfg4qJrdwQbI5kpKybihBE26yie5UMLsageuaDXvOwYRixXQFsxX4LYLsC2L6ATF3vKZU_8KlVYFFqZfNjdF5RYp3T__I_VtyTzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478622039</pqid></control><display><type>article</type><title>XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shunmuga Sundaram, P. ; Sangeetha, T. ; Rajakarthihan, S. ; Vijayalaksmi, R. ; Elangovan, A. ; Arivazhagan, G.</creator><creatorcontrib>Shunmuga Sundaram, P. ; Sangeetha, T. ; Rajakarthihan, S. ; Vijayalaksmi, R. ; Elangovan, A. ; Arivazhagan, G.</creatorcontrib><description>Cobalt doped Zinc Oxide (Zn1-xCoxO) (x = 0.03) nanoparticles have been synthesized by chemical co-precipitation method at room temperature and characterized by X-ray diffraction (XRD) study. The XRD pattern indicates that Co doped ZnO NPs are with hexagonal wurtzite geometry and diffraction peaks get shifted to higher angles which is the characteristic influence of dopant Co that has an ionic radius smaller than the host cation. The true values of lattice constants have been calculated using Nelson–Riley Function. Crystallite size calculated using Scherrer formula has been compared with that estimated by uniform deformation (UDM), uniform stress deformation (USDM) and uniform deformation energy density (UDEDM) models of Williamson – Hall method, and also by size-strain plot (SSP) method. The lattice strain has also been calculated. The surface morphology and elemental analysis of the product have been characterized by field emission scanning electron microscopy (FESEM) and energy dispersive (EDAX) spectra.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412342</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Angles (geometry) ; Chemical precipitation ; Chemical synthesis ; Co-precipitation ; Co:ZnO Nanoparticles ; Cobalt ; Coprecipitation ; Crystallites ; Deformation ; Diffraction ; Diffraction patterns ; Emission analysis ; Field emission microscopy ; Flux density ; Lattice parameters ; Lattice strain ; Mathematical morphology ; Nanoparticles ; Nelson-Riley plot ; Room temperature ; Size-strain plot ; Studies ; Wurtzite ; W–H Analysis ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Physica. B, Condensed matter, 2020-10, Vol.595, p.412342, Article 412342</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-fcc8315db067ac6b78206acb90e3f72eb990bcbcedb02624489c16f4f11824a73</citedby><cites>FETCH-LOGICAL-c331t-fcc8315db067ac6b78206acb90e3f72eb990bcbcedb02624489c16f4f11824a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412342$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shunmuga Sundaram, P.</creatorcontrib><creatorcontrib>Sangeetha, T.</creatorcontrib><creatorcontrib>Rajakarthihan, S.</creatorcontrib><creatorcontrib>Vijayalaksmi, R.</creatorcontrib><creatorcontrib>Elangovan, A.</creatorcontrib><creatorcontrib>Arivazhagan, G.</creatorcontrib><title>XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches</title><title>Physica. B, Condensed matter</title><description>Cobalt doped Zinc Oxide (Zn1-xCoxO) (x = 0.03) nanoparticles have been synthesized by chemical co-precipitation method at room temperature and characterized by X-ray diffraction (XRD) study. The XRD pattern indicates that Co doped ZnO NPs are with hexagonal wurtzite geometry and diffraction peaks get shifted to higher angles which is the characteristic influence of dopant Co that has an ionic radius smaller than the host cation. The true values of lattice constants have been calculated using Nelson–Riley Function. Crystallite size calculated using Scherrer formula has been compared with that estimated by uniform deformation (UDM), uniform stress deformation (USDM) and uniform deformation energy density (UDEDM) models of Williamson – Hall method, and also by size-strain plot (SSP) method. The lattice strain has also been calculated. The surface morphology and elemental analysis of the product have been characterized by field emission scanning electron microscopy (FESEM) and energy dispersive (EDAX) spectra.</description><subject>Angles (geometry)</subject><subject>Chemical precipitation</subject><subject>Chemical synthesis</subject><subject>Co-precipitation</subject><subject>Co:ZnO Nanoparticles</subject><subject>Cobalt</subject><subject>Coprecipitation</subject><subject>Crystallites</subject><subject>Deformation</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Flux density</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Mathematical morphology</subject><subject>Nanoparticles</subject><subject>Nelson-Riley plot</subject><subject>Room temperature</subject><subject>Size-strain plot</subject><subject>Studies</subject><subject>Wurtzite</subject><subject>W–H Analysis</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOAyEYhYnRxFp9Ajckrqdymc7FxIWpl5o0MTEa3RFgmJSGAgJjbB_E55Va17L5WZzvHPgPAOcYTTDC1eVq4pebKCYEETQpMaElOQAj3NS0IJhOD8EItQQX5ZRUx-AkxhXKB9d4BL7fn29hTGGQaQjc5OvQaRWhs1A6wU2CnfOqg1ttJXRfulPQcus8D0lLk4VxY9NSRb3NIrHJkA9Kaq8TTzqbrFVauu4KvmljNF9HZ4s5NwZy28EdVORsri30xiXIvQ-Oy2x3Co56bqI6-5tj8Hp_9zKbF4unh8fZzaKQlOJU9FI2FE87gaqay0rUDUEVl6JFivY1UaJtkZBCqqwgFSnLppW46sse44aUvKZjcLH3zcEfg4qJrdwQbI5kpKybihBE26yie5UMLsageuaDXvOwYRixXQFsxX4LYLsC2L6ATF3vKZU_8KlVYFFqZfNjdF5RYp3T__I_VtyTzA</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Shunmuga Sundaram, P.</creator><creator>Sangeetha, T.</creator><creator>Rajakarthihan, S.</creator><creator>Vijayalaksmi, R.</creator><creator>Elangovan, A.</creator><creator>Arivazhagan, G.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20201015</creationdate><title>XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches</title><author>Shunmuga Sundaram, P. ; Sangeetha, T. ; Rajakarthihan, S. ; Vijayalaksmi, R. ; Elangovan, A. ; Arivazhagan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-fcc8315db067ac6b78206acb90e3f72eb990bcbcedb02624489c16f4f11824a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angles (geometry)</topic><topic>Chemical precipitation</topic><topic>Chemical synthesis</topic><topic>Co-precipitation</topic><topic>Co:ZnO Nanoparticles</topic><topic>Cobalt</topic><topic>Coprecipitation</topic><topic>Crystallites</topic><topic>Deformation</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Flux density</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Mathematical morphology</topic><topic>Nanoparticles</topic><topic>Nelson-Riley plot</topic><topic>Room temperature</topic><topic>Size-strain plot</topic><topic>Studies</topic><topic>Wurtzite</topic><topic>W–H Analysis</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shunmuga Sundaram, P.</creatorcontrib><creatorcontrib>Sangeetha, T.</creatorcontrib><creatorcontrib>Rajakarthihan, S.</creatorcontrib><creatorcontrib>Vijayalaksmi, R.</creatorcontrib><creatorcontrib>Elangovan, A.</creatorcontrib><creatorcontrib>Arivazhagan, G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shunmuga Sundaram, P.</au><au>Sangeetha, T.</au><au>Rajakarthihan, S.</au><au>Vijayalaksmi, R.</au><au>Elangovan, A.</au><au>Arivazhagan, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>595</volume><spage>412342</spage><pages>412342-</pages><artnum>412342</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Cobalt doped Zinc Oxide (Zn1-xCoxO) (x = 0.03) nanoparticles have been synthesized by chemical co-precipitation method at room temperature and characterized by X-ray diffraction (XRD) study. The XRD pattern indicates that Co doped ZnO NPs are with hexagonal wurtzite geometry and diffraction peaks get shifted to higher angles which is the characteristic influence of dopant Co that has an ionic radius smaller than the host cation. The true values of lattice constants have been calculated using Nelson–Riley Function. Crystallite size calculated using Scherrer formula has been compared with that estimated by uniform deformation (UDM), uniform stress deformation (USDM) and uniform deformation energy density (UDEDM) models of Williamson – Hall method, and also by size-strain plot (SSP) method. The lattice strain has also been calculated. The surface morphology and elemental analysis of the product have been characterized by field emission scanning electron microscopy (FESEM) and energy dispersive (EDAX) spectra.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412342</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2020-10, Vol.595, p.412342, Article 412342
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2478622039
source ScienceDirect Journals (5 years ago - present)
subjects Angles (geometry)
Chemical precipitation
Chemical synthesis
Co-precipitation
Co:ZnO Nanoparticles
Cobalt
Coprecipitation
Crystallites
Deformation
Diffraction
Diffraction patterns
Emission analysis
Field emission microscopy
Flux density
Lattice parameters
Lattice strain
Mathematical morphology
Nanoparticles
Nelson-Riley plot
Room temperature
Size-strain plot
Studies
Wurtzite
W–H Analysis
X-ray diffraction
Zinc oxide
Zinc oxides
title XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRD%20structural%20studies%20on%20cobalt%20doped%20zinc%20oxide%20nanoparticles%20synthesized%20by%20coprecipitation%20method:%20Williamson-Hall%20and%20size-strain%20plot%20approaches&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Shunmuga%20Sundaram,%20P.&rft.date=2020-10-15&rft.volume=595&rft.spage=412342&rft.pages=412342-&rft.artnum=412342&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412342&rft_dat=%3Cproquest_cross%3E2478622039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478622039&rft_id=info:pmid/&rft_els_id=S0921452620303537&rfr_iscdi=true