Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition
•Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2021-01, Vol.518, p.167399, Article 167399 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 167399 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 518 |
creator | Peixoto, E.B. Carvalho, M.H. Duque, J.G.S. Muraca, D. Xing, Y.T. Nunes, W.C. |
description | •Nanoparticles.•TEM.•RAM.•Magnetism.
Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter. |
doi_str_mv | 10.1016/j.jmmm.2020.167399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478620337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320323660</els_id><sourcerecordid>2478620337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9dRkkiYZcCPFFxRdqOuQxy1m6CQ1mQr115ta10Ig54Zzzg0fQpeUzCih4rqf9cMwzFrS1gchWdcdoQlVkjVcCnGMJoQR3ig1Z6forJSeEEK5EhMUX8M3YB_KmIPdjiFFbKLHIY6QjfudYbUCNxZcZfVtIBfw-B4YeQ6S4GhiMut12uGyi-MHlNrnsd3hqvNg1tiDS8MmlbAvO0cnK7MucPF3T9H7_d3b4rFZvjw8LW6XjWOtGhuuOu-MNJTVw5USrmPcCmBWGue4ck4IKbxkbt51au4tp7QV1oJVVFrv2RRdHXo3OX1uoYy6T9sc60rdcqlESxiT1dUeXC6nUjKs9CaHweSdpkTvuepe77nqPVd94FpDN4cQ1P9_Bci6uADRgQ-5ctI-hf_iP7EsgwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478620337</pqid></control><display><type>article</type><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</creator><creatorcontrib>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</creatorcontrib><description>•Nanoparticles.•TEM.•RAM.•Magnetism.
Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.167399</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Coercivity ; Diffraction patterns ; Magnetic properties ; Nanoalloys ; Nanoparticles ; Particle size distribution ; Silicon dioxide ; Temperature dependence ; Thermal decomposition</subject><ispartof>Journal of magnetism and magnetic materials, 2021-01, Vol.518, p.167399, Article 167399</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</citedby><cites>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885320323660$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Peixoto, E.B.</creatorcontrib><creatorcontrib>Carvalho, M.H.</creatorcontrib><creatorcontrib>Duque, J.G.S.</creatorcontrib><creatorcontrib>Muraca, D.</creatorcontrib><creatorcontrib>Xing, Y.T.</creatorcontrib><creatorcontrib>Nunes, W.C.</creatorcontrib><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><title>Journal of magnetism and magnetic materials</title><description>•Nanoparticles.•TEM.•RAM.•Magnetism.
Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</description><subject>Anisotropy</subject><subject>Coercivity</subject><subject>Diffraction patterns</subject><subject>Magnetic properties</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><subject>Thermal decomposition</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9dRkkiYZcCPFFxRdqOuQxy1m6CQ1mQr115ta10Ig54Zzzg0fQpeUzCih4rqf9cMwzFrS1gchWdcdoQlVkjVcCnGMJoQR3ig1Z6forJSeEEK5EhMUX8M3YB_KmIPdjiFFbKLHIY6QjfudYbUCNxZcZfVtIBfw-B4YeQ6S4GhiMut12uGyi-MHlNrnsd3hqvNg1tiDS8MmlbAvO0cnK7MucPF3T9H7_d3b4rFZvjw8LW6XjWOtGhuuOu-MNJTVw5USrmPcCmBWGue4ck4IKbxkbt51au4tp7QV1oJVVFrv2RRdHXo3OX1uoYy6T9sc60rdcqlESxiT1dUeXC6nUjKs9CaHweSdpkTvuepe77nqPVd94FpDN4cQ1P9_Bci6uADRgQ-5ctI-hf_iP7EsgwU</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Peixoto, E.B.</creator><creator>Carvalho, M.H.</creator><creator>Duque, J.G.S.</creator><creator>Muraca, D.</creator><creator>Xing, Y.T.</creator><creator>Nunes, W.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210115</creationdate><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><author>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Coercivity</topic><topic>Diffraction patterns</topic><topic>Magnetic properties</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, E.B.</creatorcontrib><creatorcontrib>Carvalho, M.H.</creatorcontrib><creatorcontrib>Duque, J.G.S.</creatorcontrib><creatorcontrib>Muraca, D.</creatorcontrib><creatorcontrib>Xing, Y.T.</creatorcontrib><creatorcontrib>Nunes, W.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, E.B.</au><au>Carvalho, M.H.</au><au>Duque, J.G.S.</au><au>Muraca, D.</au><au>Xing, Y.T.</au><au>Nunes, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>518</volume><spage>167399</spage><pages>167399-</pages><artnum>167399</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Nanoparticles.•TEM.•RAM.•Magnetism.
Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.167399</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2021-01, Vol.518, p.167399, Article 167399 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2478620337 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Coercivity Diffraction patterns Magnetic properties Nanoalloys Nanoparticles Particle size distribution Silicon dioxide Temperature dependence Thermal decomposition |
title | Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20distribution%20and%20interaction%20effects%20on%20dispersed%20Fe30Ni70%20nanoalloy%20synthesized%20by%20thermal%20decomposition&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Peixoto,%20E.B.&rft.date=2021-01-15&rft.volume=518&rft.spage=167399&rft.pages=167399-&rft.artnum=167399&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.167399&rft_dat=%3Cproquest_cross%3E2478620337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478620337&rft_id=info:pmid/&rft_els_id=S0304885320323660&rfr_iscdi=true |