Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition

•Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2021-01, Vol.518, p.167399, Article 167399
Hauptverfasser: Peixoto, E.B., Carvalho, M.H., Duque, J.G.S., Muraca, D., Xing, Y.T., Nunes, W.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 167399
container_title Journal of magnetism and magnetic materials
container_volume 518
creator Peixoto, E.B.
Carvalho, M.H.
Duque, J.G.S.
Muraca, D.
Xing, Y.T.
Nunes, W.C.
description •Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.
doi_str_mv 10.1016/j.jmmm.2020.167399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478620337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320323660</els_id><sourcerecordid>2478620337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9dRkkiYZcCPFFxRdqOuQxy1m6CQ1mQr115ta10Ig54Zzzg0fQpeUzCih4rqf9cMwzFrS1gchWdcdoQlVkjVcCnGMJoQR3ig1Z6forJSeEEK5EhMUX8M3YB_KmIPdjiFFbKLHIY6QjfudYbUCNxZcZfVtIBfw-B4YeQ6S4GhiMut12uGyi-MHlNrnsd3hqvNg1tiDS8MmlbAvO0cnK7MucPF3T9H7_d3b4rFZvjw8LW6XjWOtGhuuOu-MNJTVw5USrmPcCmBWGue4ck4IKbxkbt51au4tp7QV1oJVVFrv2RRdHXo3OX1uoYy6T9sc60rdcqlESxiT1dUeXC6nUjKs9CaHweSdpkTvuepe77nqPVd94FpDN4cQ1P9_Bci6uADRgQ-5ctI-hf_iP7EsgwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478620337</pqid></control><display><type>article</type><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</creator><creatorcontrib>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</creatorcontrib><description>•Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.167399</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Coercivity ; Diffraction patterns ; Magnetic properties ; Nanoalloys ; Nanoparticles ; Particle size distribution ; Silicon dioxide ; Temperature dependence ; Thermal decomposition</subject><ispartof>Journal of magnetism and magnetic materials, 2021-01, Vol.518, p.167399, Article 167399</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</citedby><cites>FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885320323660$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Peixoto, E.B.</creatorcontrib><creatorcontrib>Carvalho, M.H.</creatorcontrib><creatorcontrib>Duque, J.G.S.</creatorcontrib><creatorcontrib>Muraca, D.</creatorcontrib><creatorcontrib>Xing, Y.T.</creatorcontrib><creatorcontrib>Nunes, W.C.</creatorcontrib><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><title>Journal of magnetism and magnetic materials</title><description>•Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</description><subject>Anisotropy</subject><subject>Coercivity</subject><subject>Diffraction patterns</subject><subject>Magnetic properties</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><subject>Thermal decomposition</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9dRkkiYZcCPFFxRdqOuQxy1m6CQ1mQr115ta10Ig54Zzzg0fQpeUzCih4rqf9cMwzFrS1gchWdcdoQlVkjVcCnGMJoQR3ig1Z6forJSeEEK5EhMUX8M3YB_KmIPdjiFFbKLHIY6QjfudYbUCNxZcZfVtIBfw-B4YeQ6S4GhiMut12uGyi-MHlNrnsd3hqvNg1tiDS8MmlbAvO0cnK7MucPF3T9H7_d3b4rFZvjw8LW6XjWOtGhuuOu-MNJTVw5USrmPcCmBWGue4ck4IKbxkbt51au4tp7QV1oJVVFrv2RRdHXo3OX1uoYy6T9sc60rdcqlESxiT1dUeXC6nUjKs9CaHweSdpkTvuepe77nqPVd94FpDN4cQ1P9_Bci6uADRgQ-5ctI-hf_iP7EsgwU</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Peixoto, E.B.</creator><creator>Carvalho, M.H.</creator><creator>Duque, J.G.S.</creator><creator>Muraca, D.</creator><creator>Xing, Y.T.</creator><creator>Nunes, W.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210115</creationdate><title>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</title><author>Peixoto, E.B. ; Carvalho, M.H. ; Duque, J.G.S. ; Muraca, D. ; Xing, Y.T. ; Nunes, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-489dca7a13a134886c934b6e3b7acc48cc6676d73c59985db41126bbeb817bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Coercivity</topic><topic>Diffraction patterns</topic><topic>Magnetic properties</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, E.B.</creatorcontrib><creatorcontrib>Carvalho, M.H.</creatorcontrib><creatorcontrib>Duque, J.G.S.</creatorcontrib><creatorcontrib>Muraca, D.</creatorcontrib><creatorcontrib>Xing, Y.T.</creatorcontrib><creatorcontrib>Nunes, W.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, E.B.</au><au>Carvalho, M.H.</au><au>Duque, J.G.S.</au><au>Muraca, D.</au><au>Xing, Y.T.</au><au>Nunes, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>518</volume><spage>167399</spage><pages>167399-</pages><artnum>167399</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Nanoparticles.•TEM.•RAM.•Magnetism. Magnetic properties of Fe30Ni70 nanoalloys dispersed in a silica matrix are reported. X-ray diffraction patterns and TEM images are consistent with a fcc crystalline structure (space group Fm3m). Thermogravimetric data and its derivative reveal important features about the kinetics formation of the nanoalloy. Magnetization data as a function of an applied magnetic field and temperature indicate that nanoalloys are superparamagnetic with blocking effects appearing around T = 10 K. However, the unusual magnetic-field-dependence of the blocking temperature suggests that interaction effects must be taken into account. In this sense, as the power law usually employed to describe noninteracting particles system do not fit our experimental data, we have used a simple modification of the random anisotropy model (RAM). Finally, once the size distribution of nanoparticles should also play a crucial role in determining the magnetic behavior of the sample, we have analyzed the T-dependence of coercive field using a generalized model, which takes into account this parameter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.167399</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2021-01, Vol.518, p.167399, Article 167399
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2478620337
source Elsevier ScienceDirect Journals
subjects Anisotropy
Coercivity
Diffraction patterns
Magnetic properties
Nanoalloys
Nanoparticles
Particle size distribution
Silicon dioxide
Temperature dependence
Thermal decomposition
title Size distribution and interaction effects on dispersed Fe30Ni70 nanoalloy synthesized by thermal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20distribution%20and%20interaction%20effects%20on%20dispersed%20Fe30Ni70%20nanoalloy%20synthesized%20by%20thermal%20decomposition&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Peixoto,%20E.B.&rft.date=2021-01-15&rft.volume=518&rft.spage=167399&rft.pages=167399-&rft.artnum=167399&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.167399&rft_dat=%3Cproquest_cross%3E2478620337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478620337&rft_id=info:pmid/&rft_els_id=S0304885320323660&rfr_iscdi=true