Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation

Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021, Vol.40 (1), p.233-261
Hauptverfasser: Xiang, Yijian, Akcakaya, Murat, Sen, Satyabrata, Nehorai, Arye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 1
container_start_page 233
container_title Circuits, systems, and signal processing
container_volume 40
creator Xiang, Yijian
Akcakaya, Murat
Sen, Satyabrata
Nehorai, Arye
description Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which are required to rapidly realize the nonstationarity, accurately learn the new characteristics of the environments, and adaptively update the detector. In this paper, aiming to develop a fully cognitive radar for target detection in nonstationary environments, we propose a unifying framework that integrates (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by applying sparse theory and kernel density estimation methods, and (iii) adaptive target detection by automatically modifying the likelihood-ratio test and corresponding detection threshold. Further, with extensive numerical examples, we demonstrate the achieved improvements in detection performance due to the proposed framework in comparison with a nonadaptive case, an adaptive matched filter method, and the clairvoyant case. We also use Wilcoxon rank-sum tests to evaluate the statistical significance of the performance improvements.
doi_str_mv 10.1007/s00034-020-01465-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478378305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478378305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2df0c2e4b4da6d2e6c4ecaa00d3ee243c9b714d0ab0c62c32f4726cd8aadc94d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAq9HJx34dy_oJBUVa8CCEaZJdt2i2JtuC_fVuXUFPwsAc5nlnmIeQUw4XHCC7jAAgFQMBDLhKE7bdIyOeSM6SPMv3yQhEljPI-fMhOYpxCcALVYgReZlhqF1Hr1znTNe0nm4apGVb-6ZrNo4-ocUQ6Tw2vqblK_rasce28X8S53TqMPgeOKfoLZ1YXHW4mxyTgwrfojv56WMyv7melXds-nB7X06mzMhUdkzYCoxwaqEspla41ChnEAGsdE4oaYpFxpUFXIBJhZGiUplIjc0RrSmUlWNyNuxdhfZj7WKnl-06-P6kFirLZV-Q9JQYKBPaGIOr9Co07xg-NQe9s6gHi7q3qL8t6m0fkkMo9nD_fPhd_U_qC_ZcdpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478378305</pqid></control><display><type>article</type><title>Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Nehorai, Arye</creator><creatorcontrib>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Nehorai, Arye</creatorcontrib><description>Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which are required to rapidly realize the nonstationarity, accurately learn the new characteristics of the environments, and adaptively update the detector. In this paper, aiming to develop a fully cognitive radar for target detection in nonstationary environments, we propose a unifying framework that integrates (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by applying sparse theory and kernel density estimation methods, and (iii) adaptive target detection by automatically modifying the likelihood-ratio test and corresponding detection threshold. Further, with extensive numerical examples, we demonstrate the achieved improvements in detection performance due to the proposed framework in comparison with a nonadaptive case, an adaptive matched filter method, and the clairvoyant case. We also use Wilcoxon rank-sum tests to evaluate the statistical significance of the performance improvements.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-020-01465-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive filters ; Algorithms ; Circuits and Systems ; Clutter ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Machine learning ; Matched filters ; Nonstationary environments ; Performance degradation ; Radar detection ; Radar equipment ; Signal,Image and Speech Processing ; Target detection</subject><ispartof>Circuits, systems, and signal processing, 2021, Vol.40 (1), p.233-261</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2df0c2e4b4da6d2e6c4ecaa00d3ee243c9b714d0ab0c62c32f4726cd8aadc94d3</citedby><cites>FETCH-LOGICAL-c363t-2df0c2e4b4da6d2e6c4ecaa00d3ee243c9b714d0ab0c62c32f4726cd8aadc94d3</cites><orcidid>0000-0002-9055-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-020-01465-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-020-01465-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Akcakaya, Murat</creatorcontrib><creatorcontrib>Sen, Satyabrata</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><title>Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which are required to rapidly realize the nonstationarity, accurately learn the new characteristics of the environments, and adaptively update the detector. In this paper, aiming to develop a fully cognitive radar for target detection in nonstationary environments, we propose a unifying framework that integrates (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by applying sparse theory and kernel density estimation methods, and (iii) adaptive target detection by automatically modifying the likelihood-ratio test and corresponding detection threshold. Further, with extensive numerical examples, we demonstrate the achieved improvements in detection performance due to the proposed framework in comparison with a nonadaptive case, an adaptive matched filter method, and the clairvoyant case. We also use Wilcoxon rank-sum tests to evaluate the statistical significance of the performance improvements.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Clutter</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Machine learning</subject><subject>Matched filters</subject><subject>Nonstationary environments</subject><subject>Performance degradation</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Signal,Image and Speech Processing</subject><subject>Target detection</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAq9HJx34dy_oJBUVa8CCEaZJdt2i2JtuC_fVuXUFPwsAc5nlnmIeQUw4XHCC7jAAgFQMBDLhKE7bdIyOeSM6SPMv3yQhEljPI-fMhOYpxCcALVYgReZlhqF1Hr1znTNe0nm4apGVb-6ZrNo4-ocUQ6Tw2vqblK_rasce28X8S53TqMPgeOKfoLZ1YXHW4mxyTgwrfojv56WMyv7melXds-nB7X06mzMhUdkzYCoxwaqEspla41ChnEAGsdE4oaYpFxpUFXIBJhZGiUplIjc0RrSmUlWNyNuxdhfZj7WKnl-06-P6kFirLZV-Q9JQYKBPaGIOr9Co07xg-NQe9s6gHi7q3qL8t6m0fkkMo9nD_fPhd_U_qC_ZcdpU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xiang, Yijian</creator><creator>Akcakaya, Murat</creator><creator>Sen, Satyabrata</creator><creator>Nehorai, Arye</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9055-9865</orcidid></search><sort><creationdate>2021</creationdate><title>Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation</title><author>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Nehorai, Arye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2df0c2e4b4da6d2e6c4ecaa00d3ee243c9b714d0ab0c62c32f4726cd8aadc94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Clutter</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Machine learning</topic><topic>Matched filters</topic><topic>Nonstationary environments</topic><topic>Performance degradation</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Signal,Image and Speech Processing</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Akcakaya, Murat</creatorcontrib><creatorcontrib>Sen, Satyabrata</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yijian</au><au>Akcakaya, Murat</au><au>Sen, Satyabrata</au><au>Nehorai, Arye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2021</date><risdate>2021</risdate><volume>40</volume><issue>1</issue><spage>233</spage><epage>261</epage><pages>233-261</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which are required to rapidly realize the nonstationarity, accurately learn the new characteristics of the environments, and adaptively update the detector. In this paper, aiming to develop a fully cognitive radar for target detection in nonstationary environments, we propose a unifying framework that integrates (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by applying sparse theory and kernel density estimation methods, and (iii) adaptive target detection by automatically modifying the likelihood-ratio test and corresponding detection threshold. Further, with extensive numerical examples, we demonstrate the achieved improvements in detection performance due to the proposed framework in comparison with a nonadaptive case, an adaptive matched filter method, and the clairvoyant case. We also use Wilcoxon rank-sum tests to evaluate the statistical significance of the performance improvements.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-020-01465-z</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9055-9865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2021, Vol.40 (1), p.233-261
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2478378305
source SpringerLink Journals - AutoHoldings
subjects Adaptive filters
Algorithms
Circuits and Systems
Clutter
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Machine learning
Matched filters
Nonstationary environments
Performance degradation
Radar detection
Radar equipment
Signal,Image and Speech Processing
Target detection
title Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20Detection%20via%20Cognitive%20Radars%20Using%20Change-Point%20Detection,%20Learning,%20and%20Adaptation&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Xiang,%20Yijian&rft.date=2021&rft.volume=40&rft.issue=1&rft.spage=233&rft.epage=261&rft.pages=233-261&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-020-01465-z&rft_dat=%3Cproquest_cross%3E2478378305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478378305&rft_id=info:pmid/&rfr_iscdi=true