Quantum Image Processing: Opportunities and Challenges

Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-8
Hauptverfasser: Ruan, Yue, Xue, Xiling, Shen, Yuanxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Ruan, Yue
Xue, Xiling
Shen, Yuanxia
description Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).
doi_str_mv 10.1155/2021/6671613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478359701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478359701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-58ceab2fa3f9358aff472d912864571d20c4dea7ff4743620ff0ac0e505bb6983</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rN39AwaPWzeSz9SaLHwsLq6DgLaRt0u3SpjVpEf-9Ld2zpxmGh3fgRega8D0A5yuCCayEkCCAnqAFcEFjDkyejjsmLAZCv87RRQgHPEoOyQKJ90G7fmiiTaNLE735NjchVK58iHZd1_p-cFVfmRBpV0Trva5r40oTLtGZ1XUwV8e5RJ_PTx_r13i7e9msH7dxTqnsY57kRmfEampTyhNtLZOkSIEkgnEJBcE5K4yW051RQbC1WOfYcMyzTKQJXaKbObfz7fdgQq8O7eDd-FIRJhPKU4lhVHezyn0bgjdWdb5qtP9VgNXUjJqaUcdmRn47833lCv1T_a__AJDRYaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478359701</pqid></control><display><type>article</type><title>Quantum Image Processing: Opportunities and Challenges</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Ruan, Yue ; Xue, Xiling ; Shen, Yuanxia</creator><contributor>Liu, Wenjie ; Wenjie Liu</contributor><creatorcontrib>Ruan, Yue ; Xue, Xiling ; Shen, Yuanxia ; Liu, Wenjie ; Wenjie Liu</creatorcontrib><description>Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6671613</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Efficiency ; Hilbert space ; Image classification ; Image processing ; Mathematical problems ; Object recognition ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum mechanics ; Quantum phenomena</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 Yue Ruan et al.</rights><rights>Copyright © 2021 Yue Ruan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-58ceab2fa3f9358aff472d912864571d20c4dea7ff4743620ff0ac0e505bb6983</citedby><cites>FETCH-LOGICAL-c337t-58ceab2fa3f9358aff472d912864571d20c4dea7ff4743620ff0ac0e505bb6983</cites><orcidid>0000-0003-1184-1270 ; 0000-0001-8351-8937 ; 0000-0001-7958-6937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Liu, Wenjie</contributor><contributor>Wenjie Liu</contributor><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xue, Xiling</creatorcontrib><creatorcontrib>Shen, Yuanxia</creatorcontrib><title>Quantum Image Processing: Opportunities and Challenges</title><title>Mathematical problems in engineering</title><description>Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).</description><subject>Efficiency</subject><subject>Hilbert space</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Mathematical problems</subject><subject>Object recognition</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E1LxDAQBuAgCq6rN39AwaPWzeSz9SaLHwsLq6DgLaRt0u3SpjVpEf-9Ld2zpxmGh3fgRega8D0A5yuCCayEkCCAnqAFcEFjDkyejjsmLAZCv87RRQgHPEoOyQKJ90G7fmiiTaNLE735NjchVK58iHZd1_p-cFVfmRBpV0Trva5r40oTLtGZ1XUwV8e5RJ_PTx_r13i7e9msH7dxTqnsY57kRmfEampTyhNtLZOkSIEkgnEJBcE5K4yW051RQbC1WOfYcMyzTKQJXaKbObfz7fdgQq8O7eDd-FIRJhPKU4lhVHezyn0bgjdWdb5qtP9VgNXUjJqaUcdmRn47833lCv1T_a__AJDRYaI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ruan, Yue</creator><creator>Xue, Xiling</creator><creator>Shen, Yuanxia</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1184-1270</orcidid><orcidid>https://orcid.org/0000-0001-8351-8937</orcidid><orcidid>https://orcid.org/0000-0001-7958-6937</orcidid></search><sort><creationdate>2021</creationdate><title>Quantum Image Processing: Opportunities and Challenges</title><author>Ruan, Yue ; Xue, Xiling ; Shen, Yuanxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-58ceab2fa3f9358aff472d912864571d20c4dea7ff4743620ff0ac0e505bb6983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Efficiency</topic><topic>Hilbert space</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Mathematical problems</topic><topic>Object recognition</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Yue</creatorcontrib><creatorcontrib>Xue, Xiling</creatorcontrib><creatorcontrib>Shen, Yuanxia</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Yue</au><au>Xue, Xiling</au><au>Shen, Yuanxia</au><au>Liu, Wenjie</au><au>Wenjie Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Image Processing: Opportunities and Challenges</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6671613</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1184-1270</orcidid><orcidid>https://orcid.org/0000-0001-8351-8937</orcidid><orcidid>https://orcid.org/0000-0001-7958-6937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-8
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2478359701
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Efficiency
Hilbert space
Image classification
Image processing
Mathematical problems
Object recognition
Quantum computers
Quantum computing
Quantum entanglement
Quantum mechanics
Quantum phenomena
title Quantum Image Processing: Opportunities and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Image%20Processing:%20Opportunities%20and%20Challenges&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ruan,%20Yue&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6671613&rft_dat=%3Cproquest_cross%3E2478359701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478359701&rft_id=info:pmid/&rfr_iscdi=true