Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning
In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localizat...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Wireless communications and mobile computing |
container_volume | 2021 |
creator | Bai, Junhang Sun, Yongliang Meng, Weixiao Li, Cheng |
description | In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m. |
doi_str_mv | 10.1155/2021/6660990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478358761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478358761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs3f0DAo67NYzPZHLW1WlzxYvEY0k1WU-qmJltEf70pLR49zYNvZpgPoXNKrikVYsQIoyMAIEqRAzSggpOiAikP_3JQx-gkpSUhhGd4gB5ffTH1eOq7NxfX0Xd9cWuSs3jW2RAifgoLv3J4nlzEdWjMyv-Y3ocud_IInji3xrUzscvVKTpqzSq5s30covn07mX8UNTP97PxTV00nMu-AGiJYJYqYivRQMMWpiJQqpKK1pUWgEHFOHCwHCRx0rRSqdIy2xoJCyn4EF3s9q5j-Ny41Otl2MQun9SslBUXlQSaqasd1cSQUnStzu99mPitKdFbXXqrS-91Zfxyh7_7zpov_z_9C75NZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478358761</pqid></control><display><type>article</type><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng</creator><contributor>Liu, Xin ; Xin Liu</contributor><creatorcontrib>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng ; Liu, Xin ; Xin Liu</creatorcontrib><description>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/6660990</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Algorithms ; Coders ; Deep learning ; Fingerprints ; Global positioning systems ; GPS ; Internet of Things ; Localization method ; Location based services ; Machine learning ; Neural networks ; Radio frequency identification ; Recurrent neural networks ; Signal strength</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Junhang Bai et al.</rights><rights>Copyright © 2021 Junhang Bai et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</citedby><cites>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</cites><orcidid>0000-0002-0642-1557 ; 0000-0002-9686-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Liu, Xin</contributor><contributor>Xin Liu</contributor><creatorcontrib>Bai, Junhang</creatorcontrib><creatorcontrib>Sun, Yongliang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><title>Wireless communications and mobile computing</title><description>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Fingerprints</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Internet of Things</subject><subject>Localization method</subject><subject>Location based services</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Radio frequency identification</subject><subject>Recurrent neural networks</subject><subject>Signal strength</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEQgIMoWKs3f0DAo67NYzPZHLW1WlzxYvEY0k1WU-qmJltEf70pLR49zYNvZpgPoXNKrikVYsQIoyMAIEqRAzSggpOiAikP_3JQx-gkpSUhhGd4gB5ffTH1eOq7NxfX0Xd9cWuSs3jW2RAifgoLv3J4nlzEdWjMyv-Y3ocud_IInji3xrUzscvVKTpqzSq5s30covn07mX8UNTP97PxTV00nMu-AGiJYJYqYivRQMMWpiJQqpKK1pUWgEHFOHCwHCRx0rRSqdIy2xoJCyn4EF3s9q5j-Ny41Otl2MQun9SslBUXlQSaqasd1cSQUnStzu99mPitKdFbXXqrS-91Zfxyh7_7zpov_z_9C75NZ2w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bai, Junhang</creator><creator>Sun, Yongliang</creator><creator>Meng, Weixiao</creator><creator>Li, Cheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0642-1557</orcidid><orcidid>https://orcid.org/0000-0002-9686-4502</orcidid></search><sort><creationdate>2021</creationdate><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><author>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Fingerprints</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Internet of Things</topic><topic>Localization method</topic><topic>Location based services</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Radio frequency identification</topic><topic>Recurrent neural networks</topic><topic>Signal strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Junhang</creatorcontrib><creatorcontrib>Sun, Yongliang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Junhang</au><au>Sun, Yongliang</au><au>Meng, Weixiao</au><au>Li, Cheng</au><au>Liu, Xin</au><au>Xin Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2021/6660990</doi><orcidid>https://orcid.org/0000-0002-0642-1557</orcidid><orcidid>https://orcid.org/0000-0002-9686-4502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2021, Vol.2021 (1) |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2478358761 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Coders Deep learning Fingerprints Global positioning systems GPS Internet of Things Localization method Location based services Machine learning Neural networks Radio frequency identification Recurrent neural networks Signal strength |
title | Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wi-Fi%20Fingerprint-Based%20Indoor%20Mobile%20User%20Localization%20Using%20Deep%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Bai,%20Junhang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/6660990&rft_dat=%3Cproquest_cross%3E2478358761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478358761&rft_id=info:pmid/&rfr_iscdi=true |