Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning

In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Hauptverfasser: Bai, Junhang, Sun, Yongliang, Meng, Weixiao, Li, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Wireless communications and mobile computing
container_volume 2021
creator Bai, Junhang
Sun, Yongliang
Meng, Weixiao
Li, Cheng
description In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.
doi_str_mv 10.1155/2021/6660990
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478358761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478358761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs3f0DAo67NYzPZHLW1WlzxYvEY0k1WU-qmJltEf70pLR49zYNvZpgPoXNKrikVYsQIoyMAIEqRAzSggpOiAikP_3JQx-gkpSUhhGd4gB5ffTH1eOq7NxfX0Xd9cWuSs3jW2RAifgoLv3J4nlzEdWjMyv-Y3ocud_IInji3xrUzscvVKTpqzSq5s30covn07mX8UNTP97PxTV00nMu-AGiJYJYqYivRQMMWpiJQqpKK1pUWgEHFOHCwHCRx0rRSqdIy2xoJCyn4EF3s9q5j-Ny41Otl2MQun9SslBUXlQSaqasd1cSQUnStzu99mPitKdFbXXqrS-91Zfxyh7_7zpov_z_9C75NZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478358761</pqid></control><display><type>article</type><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng</creator><contributor>Liu, Xin ; Xin Liu</contributor><creatorcontrib>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng ; Liu, Xin ; Xin Liu</creatorcontrib><description>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/6660990</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Algorithms ; Coders ; Deep learning ; Fingerprints ; Global positioning systems ; GPS ; Internet of Things ; Localization method ; Location based services ; Machine learning ; Neural networks ; Radio frequency identification ; Recurrent neural networks ; Signal strength</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Junhang Bai et al.</rights><rights>Copyright © 2021 Junhang Bai et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</citedby><cites>FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</cites><orcidid>0000-0002-0642-1557 ; 0000-0002-9686-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Liu, Xin</contributor><contributor>Xin Liu</contributor><creatorcontrib>Bai, Junhang</creatorcontrib><creatorcontrib>Sun, Yongliang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><title>Wireless communications and mobile computing</title><description>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Fingerprints</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Internet of Things</subject><subject>Localization method</subject><subject>Location based services</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Radio frequency identification</subject><subject>Recurrent neural networks</subject><subject>Signal strength</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEQgIMoWKs3f0DAo67NYzPZHLW1WlzxYvEY0k1WU-qmJltEf70pLR49zYNvZpgPoXNKrikVYsQIoyMAIEqRAzSggpOiAikP_3JQx-gkpSUhhGd4gB5ffTH1eOq7NxfX0Xd9cWuSs3jW2RAifgoLv3J4nlzEdWjMyv-Y3ocud_IInji3xrUzscvVKTpqzSq5s30covn07mX8UNTP97PxTV00nMu-AGiJYJYqYivRQMMWpiJQqpKK1pUWgEHFOHCwHCRx0rRSqdIy2xoJCyn4EF3s9q5j-Ny41Otl2MQun9SslBUXlQSaqasd1cSQUnStzu99mPitKdFbXXqrS-91Zfxyh7_7zpov_z_9C75NZ2w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bai, Junhang</creator><creator>Sun, Yongliang</creator><creator>Meng, Weixiao</creator><creator>Li, Cheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0642-1557</orcidid><orcidid>https://orcid.org/0000-0002-9686-4502</orcidid></search><sort><creationdate>2021</creationdate><title>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</title><author>Bai, Junhang ; Sun, Yongliang ; Meng, Weixiao ; Li, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-66f052d190d85c6c2ba80649415fe4d6626823636d3670e7af7994d2dfa76b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Fingerprints</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Internet of Things</topic><topic>Localization method</topic><topic>Location based services</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Radio frequency identification</topic><topic>Recurrent neural networks</topic><topic>Signal strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Junhang</creatorcontrib><creatorcontrib>Sun, Yongliang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Junhang</au><au>Sun, Yongliang</au><au>Meng, Weixiao</au><au>Li, Cheng</au><au>Liu, Xin</au><au>Xin Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In recent years, deep learning has been used for Wi-Fi fingerprint-based localization to achieve a remarkable performance, which is expected to satisfy the increasing requirements of indoor location-based service (LBS). In this paper, we propose a Wi-Fi fingerprint-based indoor mobile user localization method that integrates a stacked improved sparse autoencoder (SISAE) and a recurrent neural network (RNN). We improve the sparse autoencoder by adding an activity penalty term in its loss function to control the neuron outputs in the hidden layer. The encoders of three improved sparse autoencoders are stacked to obtain high-level feature representations of received signal strength (RSS) vectors, and an SISAE is constructed for localization by adding a logistic regression layer as the output layer to the stacked encoders. Meanwhile, using the previous location coordinates computed by the trained SISAE as extra inputs, an RNN is employed to compute more accurate current location coordinates for mobile users. The experimental results demonstrate that the mean error of the proposed SISAE-RNN for mobile user localization can be reduced to 1.60 m.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2021/6660990</doi><orcidid>https://orcid.org/0000-0002-0642-1557</orcidid><orcidid>https://orcid.org/0000-0002-9686-4502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2021, Vol.2021 (1)
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2478358761
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Coders
Deep learning
Fingerprints
Global positioning systems
GPS
Internet of Things
Localization method
Location based services
Machine learning
Neural networks
Radio frequency identification
Recurrent neural networks
Signal strength
title Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wi-Fi%20Fingerprint-Based%20Indoor%20Mobile%20User%20Localization%20Using%20Deep%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Bai,%20Junhang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/6660990&rft_dat=%3Cproquest_cross%3E2478358761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478358761&rft_id=info:pmid/&rfr_iscdi=true