Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations

We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2021-03, Vol.74 (3), p.453-477
Hauptverfasser: Bella, Peter, Schäffner, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 3
container_start_page 453
container_title Communications on pure and applied mathematics
container_volume 74
creator Bella, Peter
Schäffner, Mathias
description We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.21876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478323807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478323807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKcX_oOAV150y0fXtJdzTDcoKqjXMU1PITNLumRF-u-tq7deHV7O8x44D0K3lMwoIWyuWzVjNBfZGZpQUoiEcMrO0YQQShKepeQSXcW4GyJNcz5Bn6XXyuIH37kaagcxYuVqvFHBKf2Ftw4OnbLm2OPGB_zmbXc03kXsG1waByrgZ-86Z4bt3vZ4ba1pj0bj9VA7kdfoolE2ws3fnKKPx_X7apOUL0_b1bJMNC_yLKmgUDVQoHXGIG-AF4tFBkUFlGlIa86JyIBUImcEMi4aJpSuREpJWhEOi5RP0d14tw3-0EE8yp3vhidslCwVOWc8J2Kg7kdKBx9jgEa2wexV6CUl8legHATKk8CBnY_st7HQ_w_K1etybPwAtQFygA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478323807</pqid></control><display><type>article</type><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><source>Wiley Online Library All Journals</source><creator>Bella, Peter ; Schäffner, Mathias</creator><creatorcontrib>Bella, Peter ; Schäffner, Mathias</creatorcontrib><description>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21876</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Applications of mathematics ; Elliptic functions ; Integral calculus ; Integral equations ; Mathematical analysis ; Regularity</subject><ispartof>Communications on pure and applied mathematics, 2021-03, Vol.74 (3), p.453-477</ispartof><rights>2019 the Authors. is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</citedby><cites>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21876$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21876$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Bella, Peter</creatorcontrib><creatorcontrib>Schäffner, Mathias</creatorcontrib><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><title>Communications on pure and applied mathematics</title><description>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</description><subject>Applications of mathematics</subject><subject>Elliptic functions</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Regularity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kF1LwzAUhoMoOKcX_oOAV150y0fXtJdzTDcoKqjXMU1PITNLumRF-u-tq7deHV7O8x44D0K3lMwoIWyuWzVjNBfZGZpQUoiEcMrO0YQQShKepeQSXcW4GyJNcz5Bn6XXyuIH37kaagcxYuVqvFHBKf2Ftw4OnbLm2OPGB_zmbXc03kXsG1waByrgZ-86Z4bt3vZ4ba1pj0bj9VA7kdfoolE2ws3fnKKPx_X7apOUL0_b1bJMNC_yLKmgUDVQoHXGIG-AF4tFBkUFlGlIa86JyIBUImcEMi4aJpSuREpJWhEOi5RP0d14tw3-0EE8yp3vhidslCwVOWc8J2Kg7kdKBx9jgEa2wexV6CUl8legHATKk8CBnY_st7HQ_w_K1etybPwAtQFygA</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Bella, Peter</creator><creator>Schäffner, Mathias</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202103</creationdate><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><author>Bella, Peter ; Schäffner, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of mathematics</topic><topic>Elliptic functions</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bella, Peter</creatorcontrib><creatorcontrib>Schäffner, Mathias</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bella, Peter</au><au>Schäffner, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2021-03</date><risdate>2021</risdate><volume>74</volume><issue>3</issue><spage>453</spage><epage>477</epage><pages>453-477</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21876</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2021-03, Vol.74 (3), p.453-477
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_2478323807
source Wiley Online Library All Journals
subjects Applications of mathematics
Elliptic functions
Integral calculus
Integral equations
Mathematical analysis
Regularity
title Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Boundedness%20and%20Harnack%20Inequality%20for%20Solutions%20of%20Linear%20Nonuniformly%20Elliptic%20Equations&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Bella,%20Peter&rft.date=2021-03&rft.volume=74&rft.issue=3&rft.spage=453&rft.epage=477&rft.pages=453-477&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21876&rft_dat=%3Cproquest_cross%3E2478323807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478323807&rft_id=info:pmid/&rfr_iscdi=true