Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations
We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2021-03, Vol.74 (3), p.453-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 3 |
container_start_page | 453 |
container_title | Communications on pure and applied mathematics |
container_volume | 74 |
creator | Bella, Peter Schäffner, Mathias |
description | We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.21876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478323807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478323807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKcX_oOAV150y0fXtJdzTDcoKqjXMU1PITNLumRF-u-tq7deHV7O8x44D0K3lMwoIWyuWzVjNBfZGZpQUoiEcMrO0YQQShKepeQSXcW4GyJNcz5Bn6XXyuIH37kaagcxYuVqvFHBKf2Ftw4OnbLm2OPGB_zmbXc03kXsG1waByrgZ-86Z4bt3vZ4ba1pj0bj9VA7kdfoolE2ws3fnKKPx_X7apOUL0_b1bJMNC_yLKmgUDVQoHXGIG-AF4tFBkUFlGlIa86JyIBUImcEMi4aJpSuREpJWhEOi5RP0d14tw3-0EE8yp3vhidslCwVOWc8J2Kg7kdKBx9jgEa2wexV6CUl8legHATKk8CBnY_st7HQ_w_K1etybPwAtQFygA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478323807</pqid></control><display><type>article</type><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><source>Wiley Online Library All Journals</source><creator>Bella, Peter ; Schäffner, Mathias</creator><creatorcontrib>Bella, Peter ; Schäffner, Mathias</creatorcontrib><description>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21876</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>Applications of mathematics ; Elliptic functions ; Integral calculus ; Integral equations ; Mathematical analysis ; Regularity</subject><ispartof>Communications on pure and applied mathematics, 2021-03, Vol.74 (3), p.453-477</ispartof><rights>2019 the Authors. is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</citedby><cites>FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21876$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21876$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Bella, Peter</creatorcontrib><creatorcontrib>Schäffner, Mathias</creatorcontrib><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><title>Communications on pure and applied mathematics</title><description>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</description><subject>Applications of mathematics</subject><subject>Elliptic functions</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Regularity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kF1LwzAUhoMoOKcX_oOAV150y0fXtJdzTDcoKqjXMU1PITNLumRF-u-tq7deHV7O8x44D0K3lMwoIWyuWzVjNBfZGZpQUoiEcMrO0YQQShKepeQSXcW4GyJNcz5Bn6XXyuIH37kaagcxYuVqvFHBKf2Ftw4OnbLm2OPGB_zmbXc03kXsG1waByrgZ-86Z4bt3vZ4ba1pj0bj9VA7kdfoolE2ws3fnKKPx_X7apOUL0_b1bJMNC_yLKmgUDVQoHXGIG-AF4tFBkUFlGlIa86JyIBUImcEMi4aJpSuREpJWhEOi5RP0d14tw3-0EE8yp3vhidslCwVOWc8J2Kg7kdKBx9jgEa2wexV6CUl8legHATKk8CBnY_st7HQ_w_K1etybPwAtQFygA</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Bella, Peter</creator><creator>Schäffner, Mathias</creator><general>John Wiley & Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202103</creationdate><title>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</title><author>Bella, Peter ; Schäffner, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3986-be9ade1e1d62e8fe39556e9be12ce4d33076e0b7820e637f27acb74104b03e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of mathematics</topic><topic>Elliptic functions</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bella, Peter</creatorcontrib><creatorcontrib>Schäffner, Mathias</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bella, Peter</au><au>Schäffner, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2021-03</date><risdate>2021</risdate><volume>74</volume><issue>3</issue><spage>453</spage><epage>477</epage><pages>453-477</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>We study local regularity properties for solutions of linear, nonuniformly elliptic equations. Assuming certain integrability conditions on the coefficient field, we prove local boundedness and Harnack inequality. The assumed integrability assumptions are essentially sharp and improve upon classical results by Trudinger. We then apply the deterministic regularity results to the corrector equation in stochastic homogenization and establish sublinearity of the corrector. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><doi>10.1002/cpa.21876</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2021-03, Vol.74 (3), p.453-477 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_2478323807 |
source | Wiley Online Library All Journals |
subjects | Applications of mathematics Elliptic functions Integral calculus Integral equations Mathematical analysis Regularity |
title | Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Boundedness%20and%20Harnack%20Inequality%20for%20Solutions%20of%20Linear%20Nonuniformly%20Elliptic%20Equations&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Bella,%20Peter&rft.date=2021-03&rft.volume=74&rft.issue=3&rft.spage=453&rft.epage=477&rft.pages=453-477&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21876&rft_dat=%3Cproquest_cross%3E2478323807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478323807&rft_id=info:pmid/&rfr_iscdi=true |