Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.)
Sclerotinia blight caused by Sclerotinia minor (Jagger) is a significant threat to peanut production; therefore varietal improvement toward this disease is needed. To date, there have been no reported quantitative trait locus (QTL) associated with Sclerotinia blight resistance in peanut. Hence, the...
Gespeichert in:
Veröffentlicht in: | Genetic resources and crop evolution 2021-02, Vol.68 (2), p.629-637 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | 2 |
container_start_page | 629 |
container_title | Genetic resources and crop evolution |
container_volume | 68 |
creator | Liang, Yuya Cason, John M. Baring, Michael R. Septiningsih, Endang M. |
description | Sclerotinia blight caused by
Sclerotinia minor
(Jagger) is a significant threat to peanut production; therefore varietal improvement toward this disease is needed. To date, there have been no reported quantitative trait locus (QTL) associated with Sclerotinia blight resistance in peanut. Hence, the objective of this study was to identify QTLs for Sclerotinia blight resistance. A total of 90 F
2:6
recombinant inbred lines, derived from a released cultivar Tamrun OL07 and a breeding line Tx964117, were used as mapping population and field experiments were conducted in 2010, 2012 and 2018 at the Texas A&M AgriLife Research and Extension Center at Stephenville, Texas. A genetic map was developed using 1211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-Seq). In total, seven QTLs were identified, two QTLs from 2010 and five QTLs from 2018, with LOD score values of 3.2 to 7.2 and explaining 6.6–25.6% phenotypic variance. Among these QTLs, three were detected in common by WinQTLCart and R/qtl. Interestingly, one of the QTLs coincides with a previously reported peanut Leaf spot resistance QTL. The findings from this study not only provide insights into disease resistant QTLs in peanut but can also be used as potential targets for breeding programs to enhance Sclerotinia blight resistance through molecular breeding. |
doi_str_mv | 10.1007/s10722-020-01012-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478286032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478286032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1aeac542516b94f2d3f56a391c270e8336bd058cb2fe71ed4670e9a792c65b33</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcBN7qIviRt0yyHwY-BgojjOqRpOs0wpjXJIPPvrVZw5-rB5dz74CB0SeGWAoi7SEEwRoABAQqUkewIzWguOMkpyGM0A8lyIssiO0VnMW4BQIqinKFm1VifXOuMTq73uG_xy7qKWMfYG6eTbfCnSx1-NTsb-uS807jeuU2XcLDRxaS9sdh5PFjt9wlfL4I2nYu4Owz9RluNq9ubc3TS6l20F793jt4e7tfLJ1I9P66Wi4oYTmUiLR15k2csp0Uts5Y1vM0LzSU1TIAtOS_qBvLS1Ky1gtomK8ZYaiGZKfKa8zm6mnaH0H_sbUxq2--DH18qlomSlQVwNlJsokzoYwy2VUNw7zocFAX1bVNNNtVoU_3YVNlY4lMpjrDf2PA3_U_rCzAQd3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478286032</pqid></control><display><type>article</type><title>Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.)</title><source>SpringerNature Journals</source><creator>Liang, Yuya ; Cason, John M. ; Baring, Michael R. ; Septiningsih, Endang M.</creator><creatorcontrib>Liang, Yuya ; Cason, John M. ; Baring, Michael R. ; Septiningsih, Endang M.</creatorcontrib><description>Sclerotinia blight caused by
Sclerotinia minor
(Jagger) is a significant threat to peanut production; therefore varietal improvement toward this disease is needed. To date, there have been no reported quantitative trait locus (QTL) associated with Sclerotinia blight resistance in peanut. Hence, the objective of this study was to identify QTLs for Sclerotinia blight resistance. A total of 90 F
2:6
recombinant inbred lines, derived from a released cultivar Tamrun OL07 and a breeding line Tx964117, were used as mapping population and field experiments were conducted in 2010, 2012 and 2018 at the Texas A&M AgriLife Research and Extension Center at Stephenville, Texas. A genetic map was developed using 1211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-Seq). In total, seven QTLs were identified, two QTLs from 2010 and five QTLs from 2018, with LOD score values of 3.2 to 7.2 and explaining 6.6–25.6% phenotypic variance. Among these QTLs, three were detected in common by WinQTLCart and R/qtl. Interestingly, one of the QTLs coincides with a previously reported peanut Leaf spot resistance QTL. The findings from this study not only provide insights into disease resistant QTLs in peanut but can also be used as potential targets for breeding programs to enhance Sclerotinia blight resistance through molecular breeding.</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-020-01012-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural production ; Agriculture ; Arachis hypogaea ; Biomedical and Life Sciences ; Blight ; Crop diseases ; Crops ; Cultivars ; Deoxyribonucleic acid ; Disease resistance ; DNA ; DNA sequencing ; Experiments ; Field tests ; Gene mapping ; Genomes ; Humidity ; Inbreeding ; Leafspot ; Legumes ; Life Sciences ; Peanuts ; Phenotypic variations ; Plant breeding ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Population ; Quantitative trait loci ; Research Article ; Sclerotinia minor ; Single-nucleotide polymorphism</subject><ispartof>Genetic resources and crop evolution, 2021-02, Vol.68 (2), p.629-637</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1aeac542516b94f2d3f56a391c270e8336bd058cb2fe71ed4670e9a792c65b33</citedby><cites>FETCH-LOGICAL-c319t-f1aeac542516b94f2d3f56a391c270e8336bd058cb2fe71ed4670e9a792c65b33</cites><orcidid>0000-0002-9481-304X ; 0000-0003-4132-651X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-020-01012-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-020-01012-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liang, Yuya</creatorcontrib><creatorcontrib>Cason, John M.</creatorcontrib><creatorcontrib>Baring, Michael R.</creatorcontrib><creatorcontrib>Septiningsih, Endang M.</creatorcontrib><title>Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.)</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Sclerotinia blight caused by
Sclerotinia minor
(Jagger) is a significant threat to peanut production; therefore varietal improvement toward this disease is needed. To date, there have been no reported quantitative trait locus (QTL) associated with Sclerotinia blight resistance in peanut. Hence, the objective of this study was to identify QTLs for Sclerotinia blight resistance. A total of 90 F
2:6
recombinant inbred lines, derived from a released cultivar Tamrun OL07 and a breeding line Tx964117, were used as mapping population and field experiments were conducted in 2010, 2012 and 2018 at the Texas A&M AgriLife Research and Extension Center at Stephenville, Texas. A genetic map was developed using 1211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-Seq). In total, seven QTLs were identified, two QTLs from 2010 and five QTLs from 2018, with LOD score values of 3.2 to 7.2 and explaining 6.6–25.6% phenotypic variance. Among these QTLs, three were detected in common by WinQTLCart and R/qtl. Interestingly, one of the QTLs coincides with a previously reported peanut Leaf spot resistance QTL. The findings from this study not only provide insights into disease resistant QTLs in peanut but can also be used as potential targets for breeding programs to enhance Sclerotinia blight resistance through molecular breeding.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Arachis hypogaea</subject><subject>Biomedical and Life Sciences</subject><subject>Blight</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>Disease resistance</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Experiments</subject><subject>Field tests</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Humidity</subject><subject>Inbreeding</subject><subject>Leafspot</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Peanuts</subject><subject>Phenotypic variations</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Population</subject><subject>Quantitative trait loci</subject><subject>Research Article</subject><subject>Sclerotinia minor</subject><subject>Single-nucleotide polymorphism</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcBN7qIviRt0yyHwY-BgojjOqRpOs0wpjXJIPPvrVZw5-rB5dz74CB0SeGWAoi7SEEwRoABAQqUkewIzWguOMkpyGM0A8lyIssiO0VnMW4BQIqinKFm1VifXOuMTq73uG_xy7qKWMfYG6eTbfCnSx1-NTsb-uS807jeuU2XcLDRxaS9sdh5PFjt9wlfL4I2nYu4Owz9RluNq9ubc3TS6l20F793jt4e7tfLJ1I9P66Wi4oYTmUiLR15k2csp0Uts5Y1vM0LzSU1TIAtOS_qBvLS1Ky1gtomK8ZYaiGZKfKa8zm6mnaH0H_sbUxq2--DH18qlomSlQVwNlJsokzoYwy2VUNw7zocFAX1bVNNNtVoU_3YVNlY4lMpjrDf2PA3_U_rCzAQd3M</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Liang, Yuya</creator><creator>Cason, John M.</creator><creator>Baring, Michael R.</creator><creator>Septiningsih, Endang M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9481-304X</orcidid><orcidid>https://orcid.org/0000-0003-4132-651X</orcidid></search><sort><creationdate>20210201</creationdate><title>Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.)</title><author>Liang, Yuya ; Cason, John M. ; Baring, Michael R. ; Septiningsih, Endang M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1aeac542516b94f2d3f56a391c270e8336bd058cb2fe71ed4670e9a792c65b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Arachis hypogaea</topic><topic>Biomedical and Life Sciences</topic><topic>Blight</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>Disease resistance</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Experiments</topic><topic>Field tests</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Humidity</topic><topic>Inbreeding</topic><topic>Leafspot</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Peanuts</topic><topic>Phenotypic variations</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Population</topic><topic>Quantitative trait loci</topic><topic>Research Article</topic><topic>Sclerotinia minor</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yuya</creatorcontrib><creatorcontrib>Cason, John M.</creatorcontrib><creatorcontrib>Baring, Michael R.</creatorcontrib><creatorcontrib>Septiningsih, Endang M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yuya</au><au>Cason, John M.</au><au>Baring, Michael R.</au><au>Septiningsih, Endang M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.)</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>629</spage><epage>637</epage><pages>629-637</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Sclerotinia blight caused by
Sclerotinia minor
(Jagger) is a significant threat to peanut production; therefore varietal improvement toward this disease is needed. To date, there have been no reported quantitative trait locus (QTL) associated with Sclerotinia blight resistance in peanut. Hence, the objective of this study was to identify QTLs for Sclerotinia blight resistance. A total of 90 F
2:6
recombinant inbred lines, derived from a released cultivar Tamrun OL07 and a breeding line Tx964117, were used as mapping population and field experiments were conducted in 2010, 2012 and 2018 at the Texas A&M AgriLife Research and Extension Center at Stephenville, Texas. A genetic map was developed using 1211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-Seq). In total, seven QTLs were identified, two QTLs from 2010 and five QTLs from 2018, with LOD score values of 3.2 to 7.2 and explaining 6.6–25.6% phenotypic variance. Among these QTLs, three were detected in common by WinQTLCart and R/qtl. Interestingly, one of the QTLs coincides with a previously reported peanut Leaf spot resistance QTL. The findings from this study not only provide insights into disease resistant QTLs in peanut but can also be used as potential targets for breeding programs to enhance Sclerotinia blight resistance through molecular breeding.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-020-01012-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9481-304X</orcidid><orcidid>https://orcid.org/0000-0003-4132-651X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9864 |
ispartof | Genetic resources and crop evolution, 2021-02, Vol.68 (2), p.629-637 |
issn | 0925-9864 1573-5109 |
language | eng |
recordid | cdi_proquest_journals_2478286032 |
source | SpringerNature Journals |
subjects | Agricultural production Agriculture Arachis hypogaea Biomedical and Life Sciences Blight Crop diseases Crops Cultivars Deoxyribonucleic acid Disease resistance DNA DNA sequencing Experiments Field tests Gene mapping Genomes Humidity Inbreeding Leafspot Legumes Life Sciences Peanuts Phenotypic variations Plant breeding Plant Genetics and Genomics Plant Physiology Plant Sciences Plant Systematics/Taxonomy/Biogeography Population Quantitative trait loci Research Article Sclerotinia minor Single-nucleotide polymorphism |
title | Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20QTLs%20associated%20with%20Sclerotinia%20blight%20resistance%20in%20peanut%20(Arachis%20hypogaea%20L.)&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Liang,%20Yuya&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=629&rft.epage=637&rft.pages=629-637&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-020-01012-4&rft_dat=%3Cproquest_cross%3E2478286032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478286032&rft_id=info:pmid/&rfr_iscdi=true |