Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation

The issue of infrared polarization and intensity images fusion has shown important value in both military and civilian areas. In this paper, a novel fusion approach is addressed by reasonably integrating the common and innovation features between the above two patterns of images, employing Bivariate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021, Vol.80 (3), p.4455-4471
Hauptverfasser: Zhu, Pan, Liu, Lu, Zhou, Xinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4471
container_issue 3
container_start_page 4455
container_title Multimedia tools and applications
container_volume 80
creator Zhu, Pan
Liu, Lu
Zhou, Xinglin
description The issue of infrared polarization and intensity images fusion has shown important value in both military and civilian areas. In this paper, a novel fusion approach is addressed by reasonably integrating the common and innovation features between the above two patterns of images, employing Bivariate Bidimensional Empirical Mode Decomposition (B-BEMD) and Sparse Representation (SR) together. Firstly, the high and low frequency components of source images are separated by B-BEMD, and the “max-absolute” rule is used as the activity level measurement to merge the high frequency components in order to effectively retain the details of the source images. Then, the common and innovation features between low frequency components are extracted by the tactfully designed SR-based method, and are combined respectively by the proper fusion rules for the sake of highlighting the common features and reserving the innovation features. Finally, the inverse B-BEMD is performed to reconstruct the fused image. Experimental results indicate the effectiveness of the proposed algorithm compared with traditional MST-and SR-based methods in both aspects of subjective visual and objective performance.
doi_str_mv 10.1007/s11042-020-09860-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478285792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478285792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e015e9d0ed5b7a17a3f507348ae27c2003167944f9cf5ace5c7d3f047d46216d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas_-LkCKVApSIucLbcZF2lKk6wE6T26XEbJG6cdqSdb1Y7hFwzuGUA-i4yBpJT4EChLHKg-xMyYUoLqjVnp0mLAqhWwM7JRYwbAJYrLidktfAu2IB11rVbG5q97ZvWZ9bXWeN79LHpd1nzadeYuSEeVisbk_sgmu8E2B6zh_nr4xGJnQ0Rs4BdwIi-P4ZdkjNntxGvfueUfDzN32cvdPn2vJjdL2klWNlTBKawrAFrtdKWaSucAi1kYZHrigMIlutSSldWTtkKVaVr4UDqWuac5bWYkpsxtwvt14CxN5t2CD6dNFzqghdKlzy5-OiqQhtjQGe6kP4LO8PAHLo0Y5cmdWmOXZp9gsQIxWT2awx_0f9QP11weGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478285792</pqid></control><display><type>article</type><title>Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Pan ; Liu, Lu ; Zhou, Xinglin</creator><creatorcontrib>Zhu, Pan ; Liu, Lu ; Zhou, Xinglin</creatorcontrib><description>The issue of infrared polarization and intensity images fusion has shown important value in both military and civilian areas. In this paper, a novel fusion approach is addressed by reasonably integrating the common and innovation features between the above two patterns of images, employing Bivariate Bidimensional Empirical Mode Decomposition (B-BEMD) and Sparse Representation (SR) together. Firstly, the high and low frequency components of source images are separated by B-BEMD, and the “max-absolute” rule is used as the activity level measurement to merge the high frequency components in order to effectively retain the details of the source images. Then, the common and innovation features between low frequency components are extracted by the tactfully designed SR-based method, and are combined respectively by the proper fusion rules for the sake of highlighting the common features and reserving the innovation features. Finally, the inverse B-BEMD is performed to reconstruct the fused image. Experimental results indicate the effectiveness of the proposed algorithm compared with traditional MST-and SR-based methods in both aspects of subjective visual and objective performance.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09860-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bivariate analysis ; Computer Communication Networks ; Computer Science ; Computer vision ; Data Structures and Information Theory ; Decomposition ; Feature extraction ; Image processing ; Image reconstruction ; Infrared imagery ; Innovations ; Laboratories ; Low frequencies ; Methods ; Multimedia ; Multimedia Information Systems ; Polarization ; Representations ; Special Purpose and Application-Based Systems ; Visual aspects</subject><ispartof>Multimedia tools and applications, 2021, Vol.80 (3), p.4455-4471</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e015e9d0ed5b7a17a3f507348ae27c2003167944f9cf5ace5c7d3f047d46216d3</citedby><cites>FETCH-LOGICAL-c319t-e015e9d0ed5b7a17a3f507348ae27c2003167944f9cf5ace5c7d3f047d46216d3</cites><orcidid>0000-0002-0873-8259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09860-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09860-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Pan</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, Xinglin</creatorcontrib><title>Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The issue of infrared polarization and intensity images fusion has shown important value in both military and civilian areas. In this paper, a novel fusion approach is addressed by reasonably integrating the common and innovation features between the above two patterns of images, employing Bivariate Bidimensional Empirical Mode Decomposition (B-BEMD) and Sparse Representation (SR) together. Firstly, the high and low frequency components of source images are separated by B-BEMD, and the “max-absolute” rule is used as the activity level measurement to merge the high frequency components in order to effectively retain the details of the source images. Then, the common and innovation features between low frequency components are extracted by the tactfully designed SR-based method, and are combined respectively by the proper fusion rules for the sake of highlighting the common features and reserving the innovation features. Finally, the inverse B-BEMD is performed to reconstruct the fused image. Experimental results indicate the effectiveness of the proposed algorithm compared with traditional MST-and SR-based methods in both aspects of subjective visual and objective performance.</description><subject>Algorithms</subject><subject>Bivariate analysis</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Infrared imagery</subject><subject>Innovations</subject><subject>Laboratories</subject><subject>Low frequencies</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Polarization</subject><subject>Representations</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Visual aspects</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas_-LkCKVApSIucLbcZF2lKk6wE6T26XEbJG6cdqSdb1Y7hFwzuGUA-i4yBpJT4EChLHKg-xMyYUoLqjVnp0mLAqhWwM7JRYwbAJYrLidktfAu2IB11rVbG5q97ZvWZ9bXWeN79LHpd1nzadeYuSEeVisbk_sgmu8E2B6zh_nr4xGJnQ0Rs4BdwIi-P4ZdkjNntxGvfueUfDzN32cvdPn2vJjdL2klWNlTBKawrAFrtdKWaSucAi1kYZHrigMIlutSSldWTtkKVaVr4UDqWuac5bWYkpsxtwvt14CxN5t2CD6dNFzqghdKlzy5-OiqQhtjQGe6kP4LO8PAHLo0Y5cmdWmOXZp9gsQIxWT2awx_0f9QP11weGM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhu, Pan</creator><creator>Liu, Lu</creator><creator>Zhou, Xinglin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0873-8259</orcidid></search><sort><creationdate>2021</creationdate><title>Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation</title><author>Zhu, Pan ; Liu, Lu ; Zhou, Xinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e015e9d0ed5b7a17a3f507348ae27c2003167944f9cf5ace5c7d3f047d46216d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bivariate analysis</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Infrared imagery</topic><topic>Innovations</topic><topic>Laboratories</topic><topic>Low frequencies</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Polarization</topic><topic>Representations</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Visual aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Pan</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, Xinglin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Pan</au><au>Liu, Lu</au><au>Zhou, Xinglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021</date><risdate>2021</risdate><volume>80</volume><issue>3</issue><spage>4455</spage><epage>4471</epage><pages>4455-4471</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The issue of infrared polarization and intensity images fusion has shown important value in both military and civilian areas. In this paper, a novel fusion approach is addressed by reasonably integrating the common and innovation features between the above two patterns of images, employing Bivariate Bidimensional Empirical Mode Decomposition (B-BEMD) and Sparse Representation (SR) together. Firstly, the high and low frequency components of source images are separated by B-BEMD, and the “max-absolute” rule is used as the activity level measurement to merge the high frequency components in order to effectively retain the details of the source images. Then, the common and innovation features between low frequency components are extracted by the tactfully designed SR-based method, and are combined respectively by the proper fusion rules for the sake of highlighting the common features and reserving the innovation features. Finally, the inverse B-BEMD is performed to reconstruct the fused image. Experimental results indicate the effectiveness of the proposed algorithm compared with traditional MST-and SR-based methods in both aspects of subjective visual and objective performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09860-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0873-8259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021, Vol.80 (3), p.4455-4471
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2478285792
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Bivariate analysis
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Decomposition
Feature extraction
Image processing
Image reconstruction
Infrared imagery
Innovations
Laboratories
Low frequencies
Methods
Multimedia
Multimedia Information Systems
Polarization
Representations
Special Purpose and Application-Based Systems
Visual aspects
title Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20polarization%20and%20intensity%20image%20fusion%20based%20on%20bivariate%20BEMD%20and%20sparse%20representation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhu,%20Pan&rft.date=2021&rft.volume=80&rft.issue=3&rft.spage=4455&rft.epage=4471&rft.pages=4455-4471&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09860-z&rft_dat=%3Cproquest_cross%3E2478285792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478285792&rft_id=info:pmid/&rfr_iscdi=true