Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach

In this paper, a particular discrete-time nonlinear and time-invariant system represented as a vector difference equation is analyzed for its stability properties. The motivation for analyzing this particular system is that it models gated recurrent unit neural networks commonly used and well known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2021, Vol.188 (1), p.291-306
Hauptverfasser: Stipanović, Dušan M., Kapetina, Mirna N., Rapaić, Milan R., Murmann, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 1
container_start_page 291
container_title Journal of optimization theory and applications
container_volume 188
creator Stipanović, Dušan M.
Kapetina, Mirna N.
Rapaić, Milan R.
Murmann, Boris
description In this paper, a particular discrete-time nonlinear and time-invariant system represented as a vector difference equation is analyzed for its stability properties. The motivation for analyzing this particular system is that it models gated recurrent unit neural networks commonly used and well known in machine learning applications. From the technical perspective, the analyses exploit the systems similarities to a convex combination of discrete-time systems, where one of the systems is trivial, and thus, the overall properties are mostly dependent on the other one. Stability results are formulated for the nonlinear system and its linearization with respect to the systems, in general, multiple equilibria. To motivate and illustrate the potential of these results in applications, some particular results are derived for the gated recurrent unit neural network models and a connection between local stability analysis and learning is provided.
doi_str_mv 10.1007/s10957-020-01776-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478285479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478285479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ba5979ce556a58785f4a9855515d508ecd9cb90aad44d1452334c09dfe5674fb3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3HtzpmqyooSBVIQBcWy0kcSEnjYjuUvj2GILEx_Wf4L0cfQqcEzgmAvAgElJAYKGAgUk7wdg-NiJAM01zm-2gEQClmlKlDdBTCCgBULvkIPT9GUzRtE3eZq7O5ibbKHmzZe2-7mC27JmZ3tvemTRK3zr-Fy2zmug_7mWRdNJ2Jjeuya-fXfTvc083GO1O-HqOD2rTBnvzqGC2vr55mN3hxP7-dTRe4ZERFXBihpCqtEBMj0rOi5kblQggiKgG5LStVFgqMqTivCBeUMV6CqmorJpLXBRujs6E3zb73NkS9cr3v0qSmXOY0F1yq5KKDq_QuBG9rvfHN2vidJqC_GeqBoU4M9Q9DvU0hNoRCMncv1v9V_5P6AtFgdXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478285479</pqid></control><display><type>article</type><title>Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Stipanović, Dušan M. ; Kapetina, Mirna N. ; Rapaić, Milan R. ; Murmann, Boris</creator><creatorcontrib>Stipanović, Dušan M. ; Kapetina, Mirna N. ; Rapaić, Milan R. ; Murmann, Boris</creatorcontrib><description>In this paper, a particular discrete-time nonlinear and time-invariant system represented as a vector difference equation is analyzed for its stability properties. The motivation for analyzing this particular system is that it models gated recurrent unit neural networks commonly used and well known in machine learning applications. From the technical perspective, the analyses exploit the systems similarities to a convex combination of discrete-time systems, where one of the systems is trivial, and thus, the overall properties are mostly dependent on the other one. Stability results are formulated for the nonlinear system and its linearization with respect to the systems, in general, multiple equilibria. To motivate and illustrate the potential of these results in applications, some particular results are derived for the gated recurrent unit neural network models and a connection between local stability analysis and learning is provided.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-020-01776-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Difference equations ; Discrete time systems ; Engineering ; Machine learning ; Mathematics ; Mathematics and Statistics ; Neural networks ; Nonlinear systems ; Operations Research/Decision Theory ; Optimization ; Stability analysis ; Technical Note ; Theory of Computation ; Time invariant systems</subject><ispartof>Journal of optimization theory and applications, 2021, Vol.188 (1), p.291-306</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ba5979ce556a58785f4a9855515d508ecd9cb90aad44d1452334c09dfe5674fb3</citedby><cites>FETCH-LOGICAL-c319t-ba5979ce556a58785f4a9855515d508ecd9cb90aad44d1452334c09dfe5674fb3</cites><orcidid>0000-0002-2826-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-020-01776-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-020-01776-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Stipanović, Dušan M.</creatorcontrib><creatorcontrib>Kapetina, Mirna N.</creatorcontrib><creatorcontrib>Rapaić, Milan R.</creatorcontrib><creatorcontrib>Murmann, Boris</creatorcontrib><title>Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, a particular discrete-time nonlinear and time-invariant system represented as a vector difference equation is analyzed for its stability properties. The motivation for analyzing this particular system is that it models gated recurrent unit neural networks commonly used and well known in machine learning applications. From the technical perspective, the analyses exploit the systems similarities to a convex combination of discrete-time systems, where one of the systems is trivial, and thus, the overall properties are mostly dependent on the other one. Stability results are formulated for the nonlinear system and its linearization with respect to the systems, in general, multiple equilibria. To motivate and illustrate the potential of these results in applications, some particular results are derived for the gated recurrent unit neural network models and a connection between local stability analysis and learning is provided.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Difference equations</subject><subject>Discrete time systems</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Stability analysis</subject><subject>Technical Note</subject><subject>Theory of Computation</subject><subject>Time invariant systems</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3HtzpmqyooSBVIQBcWy0kcSEnjYjuUvj2GILEx_Wf4L0cfQqcEzgmAvAgElJAYKGAgUk7wdg-NiJAM01zm-2gEQClmlKlDdBTCCgBULvkIPT9GUzRtE3eZq7O5ibbKHmzZe2-7mC27JmZ3tvemTRK3zr-Fy2zmug_7mWRdNJ2Jjeuya-fXfTvc083GO1O-HqOD2rTBnvzqGC2vr55mN3hxP7-dTRe4ZERFXBihpCqtEBMj0rOi5kblQggiKgG5LStVFgqMqTivCBeUMV6CqmorJpLXBRujs6E3zb73NkS9cr3v0qSmXOY0F1yq5KKDq_QuBG9rvfHN2vidJqC_GeqBoU4M9Q9DvU0hNoRCMncv1v9V_5P6AtFgdXs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Stipanović, Dušan M.</creator><creator>Kapetina, Mirna N.</creator><creator>Rapaić, Milan R.</creator><creator>Murmann, Boris</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2826-5241</orcidid></search><sort><creationdate>2021</creationdate><title>Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach</title><author>Stipanović, Dušan M. ; Kapetina, Mirna N. ; Rapaić, Milan R. ; Murmann, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ba5979ce556a58785f4a9855515d508ecd9cb90aad44d1452334c09dfe5674fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Difference equations</topic><topic>Discrete time systems</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Stability analysis</topic><topic>Technical Note</topic><topic>Theory of Computation</topic><topic>Time invariant systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stipanović, Dušan M.</creatorcontrib><creatorcontrib>Kapetina, Mirna N.</creatorcontrib><creatorcontrib>Rapaić, Milan R.</creatorcontrib><creatorcontrib>Murmann, Boris</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stipanović, Dušan M.</au><au>Kapetina, Mirna N.</au><au>Rapaić, Milan R.</au><au>Murmann, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2021</date><risdate>2021</risdate><volume>188</volume><issue>1</issue><spage>291</spage><epage>306</epage><pages>291-306</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, a particular discrete-time nonlinear and time-invariant system represented as a vector difference equation is analyzed for its stability properties. The motivation for analyzing this particular system is that it models gated recurrent unit neural networks commonly used and well known in machine learning applications. From the technical perspective, the analyses exploit the systems similarities to a convex combination of discrete-time systems, where one of the systems is trivial, and thus, the overall properties are mostly dependent on the other one. Stability results are formulated for the nonlinear system and its linearization with respect to the systems, in general, multiple equilibria. To motivate and illustrate the potential of these results in applications, some particular results are derived for the gated recurrent unit neural network models and a connection between local stability analysis and learning is provided.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-020-01776-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2826-5241</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2021, Vol.188 (1), p.291-306
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2478285479
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Difference equations
Discrete time systems
Engineering
Machine learning
Mathematics
Mathematics and Statistics
Neural networks
Nonlinear systems
Operations Research/Decision Theory
Optimization
Stability analysis
Technical Note
Theory of Computation
Time invariant systems
title Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Gated%20Recurrent%20Unit%20Neural%20Networks:%20Convex%20Combination%20Formulation%20Approach&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Stipanovi%C4%87,%20Du%C5%A1an%20M.&rft.date=2021&rft.volume=188&rft.issue=1&rft.spage=291&rft.epage=306&rft.pages=291-306&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-020-01776-w&rft_dat=%3Cproquest_cross%3E2478285479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478285479&rft_id=info:pmid/&rfr_iscdi=true