A detection and severity estimation system for generic diseases of tomato greenhouse plants

•The shape of leaves alone has predictive power for disease recognition.•A general disease model can be trained to recognize previously unseen tomato leaf diseases.•Automatic disease severity estimation can achieve results comparable to those of human evaluation. The management of plant disease is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2020-11, Vol.178, p.105701, Article 105701
Hauptverfasser: Wspanialy, Patrick, Moussa, Medhat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105701
container_title Computers and electronics in agriculture
container_volume 178
creator Wspanialy, Patrick
Moussa, Medhat
description •The shape of leaves alone has predictive power for disease recognition.•A general disease model can be trained to recognize previously unseen tomato leaf diseases.•Automatic disease severity estimation can achieve results comparable to those of human evaluation. The management of plant disease is a significant economic and environmental factor in the production of greenhouse tomato plants. Human expertise for assessing the presence and extent of disease is important in creating and implementing management plans, but it is difficult and expensive to acquire. In this paper, we present a new computer vision system to automatically recognize several diseases, detect previously unseen disease and to estimate per-leaf severity. Training and testing of models used several modified versions of the nine types of tomato disease of the PlantVillage tomato dataset and showed how different leaf properties impact disease detection.
doi_str_mv 10.1016/j.compag.2020.105701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478257900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169920302052</els_id><sourcerecordid>2478257900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e21307345bea0707339bbec5a7124a67f10cefd9670505a94d60dde4e7cbf6363</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwBhwscU4ZO4uTC1JVsUmVuMCJg-XYk-KojYPtVurb4xLOnGb7Z_sIuWWwYMCq-36h3W5UmwUHfkqVAtgZmbFa8EwwEOdklmR1xqqmuSRXIfSQ4qYWM_K5pAYj6mjdQNVgaMADehuPFEO0O_WbD8cQcUc75-kGh1TW1NiAKmCgrqPRJZ2jG484fLl9QDpu1RDDNbno1DbgzZ-dk4-nx_fVS7Z-e35dLdeZzusyZshZDiIvyhYViOTlTduiLpVgvFCV6Bho7ExTCSihVE1hKjAGCxS67aq8yufkbpo7eve9T3fL3u39kFZKXoial6IBSKpiUmnvQvDYydGnB_1RMpAnjLKXE0Z5wignjKntYWrD9MHBopdBWxw0GusTNmmc_X_AD_AIfgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478257900</pqid></control><display><type>article</type><title>A detection and severity estimation system for generic diseases of tomato greenhouse plants</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wspanialy, Patrick ; Moussa, Medhat</creator><creatorcontrib>Wspanialy, Patrick ; Moussa, Medhat</creatorcontrib><description>•The shape of leaves alone has predictive power for disease recognition.•A general disease model can be trained to recognize previously unseen tomato leaf diseases.•Automatic disease severity estimation can achieve results comparable to those of human evaluation. The management of plant disease is a significant economic and environmental factor in the production of greenhouse tomato plants. Human expertise for assessing the presence and extent of disease is important in creating and implementing management plans, but it is difficult and expensive to acquire. In this paper, we present a new computer vision system to automatically recognize several diseases, detect previously unseen disease and to estimate per-leaf severity. Training and testing of models used several modified versions of the nine types of tomato disease of the PlantVillage tomato dataset and showed how different leaf properties impact disease detection.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105701</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer vision ; Disease detection ; Greenhouse tomato ; Machine learning ; Plant diseases ; Severity estimation ; Tomatoes ; Vision systems</subject><ispartof>Computers and electronics in agriculture, 2020-11, Vol.178, p.105701, Article 105701</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e21307345bea0707339bbec5a7124a67f10cefd9670505a94d60dde4e7cbf6363</citedby><cites>FETCH-LOGICAL-c385t-e21307345bea0707339bbec5a7124a67f10cefd9670505a94d60dde4e7cbf6363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2020.105701$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wspanialy, Patrick</creatorcontrib><creatorcontrib>Moussa, Medhat</creatorcontrib><title>A detection and severity estimation system for generic diseases of tomato greenhouse plants</title><title>Computers and electronics in agriculture</title><description>•The shape of leaves alone has predictive power for disease recognition.•A general disease model can be trained to recognize previously unseen tomato leaf diseases.•Automatic disease severity estimation can achieve results comparable to those of human evaluation. The management of plant disease is a significant economic and environmental factor in the production of greenhouse tomato plants. Human expertise for assessing the presence and extent of disease is important in creating and implementing management plans, but it is difficult and expensive to acquire. In this paper, we present a new computer vision system to automatically recognize several diseases, detect previously unseen disease and to estimate per-leaf severity. Training and testing of models used several modified versions of the nine types of tomato disease of the PlantVillage tomato dataset and showed how different leaf properties impact disease detection.</description><subject>Computer vision</subject><subject>Disease detection</subject><subject>Greenhouse tomato</subject><subject>Machine learning</subject><subject>Plant diseases</subject><subject>Severity estimation</subject><subject>Tomatoes</subject><subject>Vision systems</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqXwBhwscU4ZO4uTC1JVsUmVuMCJg-XYk-KojYPtVurb4xLOnGb7Z_sIuWWwYMCq-36h3W5UmwUHfkqVAtgZmbFa8EwwEOdklmR1xqqmuSRXIfSQ4qYWM_K5pAYj6mjdQNVgaMADehuPFEO0O_WbD8cQcUc75-kGh1TW1NiAKmCgrqPRJZ2jG484fLl9QDpu1RDDNbno1DbgzZ-dk4-nx_fVS7Z-e35dLdeZzusyZshZDiIvyhYViOTlTduiLpVgvFCV6Bho7ExTCSihVE1hKjAGCxS67aq8yufkbpo7eve9T3fL3u39kFZKXoial6IBSKpiUmnvQvDYydGnB_1RMpAnjLKXE0Z5wignjKntYWrD9MHBopdBWxw0GusTNmmc_X_AD_AIfgA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Wspanialy, Patrick</creator><creator>Moussa, Medhat</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202011</creationdate><title>A detection and severity estimation system for generic diseases of tomato greenhouse plants</title><author>Wspanialy, Patrick ; Moussa, Medhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e21307345bea0707339bbec5a7124a67f10cefd9670505a94d60dde4e7cbf6363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer vision</topic><topic>Disease detection</topic><topic>Greenhouse tomato</topic><topic>Machine learning</topic><topic>Plant diseases</topic><topic>Severity estimation</topic><topic>Tomatoes</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wspanialy, Patrick</creatorcontrib><creatorcontrib>Moussa, Medhat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wspanialy, Patrick</au><au>Moussa, Medhat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A detection and severity estimation system for generic diseases of tomato greenhouse plants</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2020-11</date><risdate>2020</risdate><volume>178</volume><spage>105701</spage><pages>105701-</pages><artnum>105701</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•The shape of leaves alone has predictive power for disease recognition.•A general disease model can be trained to recognize previously unseen tomato leaf diseases.•Automatic disease severity estimation can achieve results comparable to those of human evaluation. The management of plant disease is a significant economic and environmental factor in the production of greenhouse tomato plants. Human expertise for assessing the presence and extent of disease is important in creating and implementing management plans, but it is difficult and expensive to acquire. In this paper, we present a new computer vision system to automatically recognize several diseases, detect previously unseen disease and to estimate per-leaf severity. Training and testing of models used several modified versions of the nine types of tomato disease of the PlantVillage tomato dataset and showed how different leaf properties impact disease detection.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105701</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2020-11, Vol.178, p.105701, Article 105701
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2478257900
source Access via ScienceDirect (Elsevier)
subjects Computer vision
Disease detection
Greenhouse tomato
Machine learning
Plant diseases
Severity estimation
Tomatoes
Vision systems
title A detection and severity estimation system for generic diseases of tomato greenhouse plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20detection%20and%20severity%20estimation%20system%20for%20generic%20diseases%20of%20tomato%20greenhouse%20plants&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Wspanialy,%20Patrick&rft.date=2020-11&rft.volume=178&rft.spage=105701&rft.pages=105701-&rft.artnum=105701&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105701&rft_dat=%3Cproquest_cross%3E2478257900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478257900&rft_id=info:pmid/&rft_els_id=S0168169920302052&rfr_iscdi=true