Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection

Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021-02, Vol.127 (2), Article 109
Hauptverfasser: Islam, Mohammad Rakibul, Iftekher, A. N. M., Mou, Farhana Akter, Rahman, Md. Moshiur, Bhuiyan, Mohammed Imamul Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Islam, Mohammad Rakibul
Iftekher, A. N. M.
Mou, Farhana Akter
Rahman, Md. Moshiur
Bhuiyan, Mohammed Imamul Hassan
description Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10 −15  dB/cm, 9.557 × 10 −16  dB/cm, 7.242 × 10 −15  dB/cm, 1.114 × 10 −16  dB/cm and 2.515 × 10 −15  dB/cm, respectively, in the frequency range from f  = 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.
doi_str_mv 10.1007/s00339-020-04261-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478255619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478255619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tybzd7lGpVKOih4jFkdyftlnazJlvBb2-0gjcHhoGZ997Aj5BLDtccoLxJAFJWDAQwUKLgTB6RCVdSMCgkHJMJVKpkRlbFKTlLaQO5lBAT8naHqVv1NHjq6DIMLrHaJWzpfjtGt-5Wa5awT93YfSB9mc1p3YXvRYjU5663IbS0Cbsh9NiPtMURm7EL_Tk58W6b8OJ3Tsnr_H45e2SL54en2e2CNZJXI2srXUqtOKLWwvja1QoabgpvnC6Vb1ttkGtEqSR3Ml9QN77QzgA3tS-cnJKrQ-4Qw_se02g3YR_7_NIKVRqhdcGrrBIHVRNDShG9HWK3c_HTcrDfAO0BoM0A7Q9AK7NJHkwpi_sVxr_of1xfgXBzcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478255619</pqid></control><display><type>article</type><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><source>SpringerNature Journals</source><creator>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</creator><creatorcontrib>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><description>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10 −15  dB/cm, 9.557 × 10 −16  dB/cm, 7.242 × 10 −15  dB/cm, 1.114 × 10 −16  dB/cm and 2.515 × 10 −15  dB/cm, respectively, in the frequency range from f  = 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04261-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Biosensors ; Birefringence ; Blood ; Characterization and Evaluation of Materials ; Cladding ; Condensed Matter Physics ; Crystal fibers ; Erythrocytes ; Finite element method ; Frequency ranges ; Hemoglobin ; Leukocytes ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Photonic crystals ; Physics ; Physics and Astronomy ; Processes ; Sensitivity ; Surfaces and Interfaces ; Terahertz frequencies ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021-02, Vol.127 (2), Article 109</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</citedby><cites>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</cites><orcidid>0000-0002-5884-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-04261-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-04261-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Iftekher, A. N. M.</creatorcontrib><creatorcontrib>Mou, Farhana Akter</creatorcontrib><creatorcontrib>Rahman, Md. Moshiur</creatorcontrib><creatorcontrib>Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10 −15  dB/cm, 9.557 × 10 −16  dB/cm, 7.242 × 10 −15  dB/cm, 1.114 × 10 −16  dB/cm and 2.515 × 10 −15  dB/cm, respectively, in the frequency range from f  = 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</description><subject>Applied physics</subject><subject>Biosensors</subject><subject>Birefringence</subject><subject>Blood</subject><subject>Characterization and Evaluation of Materials</subject><subject>Cladding</subject><subject>Condensed Matter Physics</subject><subject>Crystal fibers</subject><subject>Erythrocytes</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Hemoglobin</subject><subject>Leukocytes</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sensitivity</subject><subject>Surfaces and Interfaces</subject><subject>Terahertz frequencies</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tybzd7lGpVKOih4jFkdyftlnazJlvBb2-0gjcHhoGZ997Aj5BLDtccoLxJAFJWDAQwUKLgTB6RCVdSMCgkHJMJVKpkRlbFKTlLaQO5lBAT8naHqVv1NHjq6DIMLrHaJWzpfjtGt-5Wa5awT93YfSB9mc1p3YXvRYjU5663IbS0Cbsh9NiPtMURm7EL_Tk58W6b8OJ3Tsnr_H45e2SL54en2e2CNZJXI2srXUqtOKLWwvja1QoabgpvnC6Vb1ttkGtEqSR3Ml9QN77QzgA3tS-cnJKrQ-4Qw_se02g3YR_7_NIKVRqhdcGrrBIHVRNDShG9HWK3c_HTcrDfAO0BoM0A7Q9AK7NJHkwpi_sVxr_of1xfgXBzcQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Islam, Mohammad Rakibul</creator><creator>Iftekher, A. N. M.</creator><creator>Mou, Farhana Akter</creator><creator>Rahman, Md. Moshiur</creator><creator>Bhuiyan, Mohammed Imamul Hassan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></search><sort><creationdate>20210201</creationdate><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><author>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Biosensors</topic><topic>Birefringence</topic><topic>Blood</topic><topic>Characterization and Evaluation of Materials</topic><topic>Cladding</topic><topic>Condensed Matter Physics</topic><topic>Crystal fibers</topic><topic>Erythrocytes</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Hemoglobin</topic><topic>Leukocytes</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sensitivity</topic><topic>Surfaces and Interfaces</topic><topic>Terahertz frequencies</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Iftekher, A. N. M.</creatorcontrib><creatorcontrib>Mou, Farhana Akter</creatorcontrib><creatorcontrib>Rahman, Md. Moshiur</creatorcontrib><creatorcontrib>Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Mohammad Rakibul</au><au>Iftekher, A. N. M.</au><au>Mou, Farhana Akter</au><au>Rahman, Md. Moshiur</au><au>Bhuiyan, Mohammed Imamul Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>127</volume><issue>2</issue><artnum>109</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10 −15  dB/cm, 9.557 × 10 −16  dB/cm, 7.242 × 10 −15  dB/cm, 1.114 × 10 −16  dB/cm and 2.515 × 10 −15  dB/cm, respectively, in the frequency range from f  = 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04261-3</doi><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021-02, Vol.127 (2), Article 109
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2478255619
source SpringerNature Journals
subjects Applied physics
Biosensors
Birefringence
Blood
Characterization and Evaluation of Materials
Cladding
Condensed Matter Physics
Crystal fibers
Erythrocytes
Finite element method
Frequency ranges
Hemoglobin
Leukocytes
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Photonic crystals
Physics
Physics and Astronomy
Processes
Sensitivity
Surfaces and Interfaces
Terahertz frequencies
Thin Films
title Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Topas-based%20ultrahigh-sensitive%20PCF%20biosensor%20for%20blood%20component%20detection&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Islam,%20Mohammad%20Rakibul&rft.date=2021-02-01&rft.volume=127&rft.issue=2&rft.artnum=109&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04261-3&rft_dat=%3Cproquest_cross%3E2478255619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478255619&rft_id=info:pmid/&rfr_iscdi=true