Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection
Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, iden...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021-02, Vol.127 (2), Article 109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Islam, Mohammad Rakibul Iftekher, A. N. M. Mou, Farhana Akter Rahman, Md. Moshiur Bhuiyan, Mohammed Imamul Hassan |
description | Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10
−15
dB/cm, 9.557 × 10
−16
dB/cm, 7.242 × 10
−15
dB/cm, 1.114 × 10
−16
dB/cm and 2.515 × 10
−15
dB/cm, respectively, in the frequency range from
f
= 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications. |
doi_str_mv | 10.1007/s00339-020-04261-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478255619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478255619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tybzd7lGpVKOih4jFkdyftlnazJlvBb2-0gjcHhoGZ997Aj5BLDtccoLxJAFJWDAQwUKLgTB6RCVdSMCgkHJMJVKpkRlbFKTlLaQO5lBAT8naHqVv1NHjq6DIMLrHaJWzpfjtGt-5Wa5awT93YfSB9mc1p3YXvRYjU5663IbS0Cbsh9NiPtMURm7EL_Tk58W6b8OJ3Tsnr_H45e2SL54en2e2CNZJXI2srXUqtOKLWwvja1QoabgpvnC6Vb1ttkGtEqSR3Ml9QN77QzgA3tS-cnJKrQ-4Qw_se02g3YR_7_NIKVRqhdcGrrBIHVRNDShG9HWK3c_HTcrDfAO0BoM0A7Q9AK7NJHkwpi_sVxr_of1xfgXBzcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478255619</pqid></control><display><type>article</type><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><source>SpringerNature Journals</source><creator>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</creator><creatorcontrib>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><description>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10
−15
dB/cm, 9.557 × 10
−16
dB/cm, 7.242 × 10
−15
dB/cm, 1.114 × 10
−16
dB/cm and 2.515 × 10
−15
dB/cm, respectively, in the frequency range from
f
= 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04261-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Biosensors ; Birefringence ; Blood ; Characterization and Evaluation of Materials ; Cladding ; Condensed Matter Physics ; Crystal fibers ; Erythrocytes ; Finite element method ; Frequency ranges ; Hemoglobin ; Leukocytes ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Photonic crystals ; Physics ; Physics and Astronomy ; Processes ; Sensitivity ; Surfaces and Interfaces ; Terahertz frequencies ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2021-02, Vol.127 (2), Article 109</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</citedby><cites>FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</cites><orcidid>0000-0002-5884-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-04261-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-04261-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Iftekher, A. N. M.</creatorcontrib><creatorcontrib>Mou, Farhana Akter</creatorcontrib><creatorcontrib>Rahman, Md. Moshiur</creatorcontrib><creatorcontrib>Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10
−15
dB/cm, 9.557 × 10
−16
dB/cm, 7.242 × 10
−15
dB/cm, 1.114 × 10
−16
dB/cm and 2.515 × 10
−15
dB/cm, respectively, in the frequency range from
f
= 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</description><subject>Applied physics</subject><subject>Biosensors</subject><subject>Birefringence</subject><subject>Blood</subject><subject>Characterization and Evaluation of Materials</subject><subject>Cladding</subject><subject>Condensed Matter Physics</subject><subject>Crystal fibers</subject><subject>Erythrocytes</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Hemoglobin</subject><subject>Leukocytes</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sensitivity</subject><subject>Surfaces and Interfaces</subject><subject>Terahertz frequencies</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tybzd7lGpVKOih4jFkdyftlnazJlvBb2-0gjcHhoGZ997Aj5BLDtccoLxJAFJWDAQwUKLgTB6RCVdSMCgkHJMJVKpkRlbFKTlLaQO5lBAT8naHqVv1NHjq6DIMLrHaJWzpfjtGt-5Wa5awT93YfSB9mc1p3YXvRYjU5663IbS0Cbsh9NiPtMURm7EL_Tk58W6b8OJ3Tsnr_H45e2SL54en2e2CNZJXI2srXUqtOKLWwvja1QoabgpvnC6Vb1ttkGtEqSR3Ml9QN77QzgA3tS-cnJKrQ-4Qw_se02g3YR_7_NIKVRqhdcGrrBIHVRNDShG9HWK3c_HTcrDfAO0BoM0A7Q9AK7NJHkwpi_sVxr_of1xfgXBzcQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Islam, Mohammad Rakibul</creator><creator>Iftekher, A. N. M.</creator><creator>Mou, Farhana Akter</creator><creator>Rahman, Md. Moshiur</creator><creator>Bhuiyan, Mohammed Imamul Hassan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></search><sort><creationdate>20210201</creationdate><title>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</title><author>Islam, Mohammad Rakibul ; Iftekher, A. N. M. ; Mou, Farhana Akter ; Rahman, Md. Moshiur ; Bhuiyan, Mohammed Imamul Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9573541ee5528fbab40c186f8a574fdd58e15ee3431a3c18e5cf65a8018bf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Biosensors</topic><topic>Birefringence</topic><topic>Blood</topic><topic>Characterization and Evaluation of Materials</topic><topic>Cladding</topic><topic>Condensed Matter Physics</topic><topic>Crystal fibers</topic><topic>Erythrocytes</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Hemoglobin</topic><topic>Leukocytes</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sensitivity</topic><topic>Surfaces and Interfaces</topic><topic>Terahertz frequencies</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Iftekher, A. N. M.</creatorcontrib><creatorcontrib>Mou, Farhana Akter</creatorcontrib><creatorcontrib>Rahman, Md. Moshiur</creatorcontrib><creatorcontrib>Bhuiyan, Mohammed Imamul Hassan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Mohammad Rakibul</au><au>Iftekher, A. N. M.</au><au>Mou, Farhana Akter</au><au>Rahman, Md. Moshiur</au><au>Bhuiyan, Mohammed Imamul Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>127</volume><issue>2</issue><artnum>109</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Detection of blood is very crucial as well as sensitive due to its importance in human body. In this manuscript, a hollow core Topas-based photonic crystal fiber (PCF) biosensor is proposed for sensing in terahertz frequency range. In the hexagonal cladding structure of this proposed biosensor, identical square-shaped air cavities in both the core and cladding are the building blocks. Different analytes such as red blood cell (RBC), hemoglobin, white blood cell (WBC), plasma and water are used to fill the core. The sensing features of the design will be examined using the finite element method. From the simulation results using COMSOL v5.3a software, achieved sensitivity for RBC is 99.39%, for hemoglobin is 99.27%, for WBC is 99.12%, for plasma is 99.03% and for water is 98.79% for y-polarization at optimum design conditions. In addition to sensitivity, the proposed design has the lowest confinement loss for RBC, hemoglobin, WBC, plasma and water of 1.124 × 10
−15
dB/cm, 9.557 × 10
−16
dB/cm, 7.242 × 10
−15
dB/cm, 1.114 × 10
−16
dB/cm and 2.515 × 10
−15
dB/cm, respectively, in the frequency range from
f
= 2 to 5 THz. In accumulation to these, the design also shows negligible effective material loss, significant birefringence, enhanced effective area, large beam divergence and very low and flattened dispersion at optimum design conditions. The superior detecting capability and simple geometry of this projected PCF biosensor make it a worthy candidate for use in different practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04261-3</doi><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021-02, Vol.127 (2), Article 109 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2478255619 |
source | SpringerNature Journals |
subjects | Applied physics Biosensors Birefringence Blood Characterization and Evaluation of Materials Cladding Condensed Matter Physics Crystal fibers Erythrocytes Finite element method Frequency ranges Hemoglobin Leukocytes Machines Manufacturing Materials science Nanotechnology Optical and Electronic Materials Photonic crystals Physics Physics and Astronomy Processes Sensitivity Surfaces and Interfaces Terahertz frequencies Thin Films |
title | Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Topas-based%20ultrahigh-sensitive%20PCF%20biosensor%20for%20blood%20component%20detection&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Islam,%20Mohammad%20Rakibul&rft.date=2021-02-01&rft.volume=127&rft.issue=2&rft.artnum=109&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04261-3&rft_dat=%3Cproquest_cross%3E2478255619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478255619&rft_id=info:pmid/&rfr_iscdi=true |