Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model
We study the effects of addition of Chern-Simons (CS) term in the minimal Yang Mills (YM) matrix model composed of two \(2 \times 2\) matrices with \(SU(2)\) gauge and \(SO(2)\) global symmetry. We obtain the Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Başkan, K Kürkçüoǧlu, S |
description | We study the effects of addition of Chern-Simons (CS) term in the minimal Yang Mills (YM) matrix model composed of two \(2 \times 2\) matrices with \(SU(2)\) gauge and \(SO(2)\) global symmetry. We obtain the Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the values of both the CS coupling, \(\kappa\), and the conserved conjugate momentum, \(p_\phi\), associated to the \(SO(2)\) symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov exponents and plotting the Poincar\'{e} sections as these two parameters are varied and, in particular, find that the largest Lyapunov exponents evaluated within a range of values of \(\kappa\) are above that is computed at \(\kappa=0\), for \(\kappa p_\phi < 0\). We also give estimates of the critical exponents for the Lyapunov exponent as the system transits from the chatoic to non-chaotic phase with \(p_\phi\) approaching to a critical value. |
doi_str_mv | 10.48550/arxiv.2101.05649 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2478171570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478171570</sourcerecordid><originalsourceid>FETCH-proquest_journals_24781715703</originalsourceid><addsrcrecordid>eNqNysEKgjAAgOERBEn5AN0GXfQw26ZzdpaiiyfrEAgyaOVkbbVp-Ph16AE6_YfvB2BNcJIVjOGtcJN6J5RgkmCWZ7sZCGiaElRklC5A6H2PMaY5p4ylAeBlJ6yHysAmqs8RjZsYXoS5o0pp7WHZSWdQrR7WeFiJwakJVvYq9QrMb0J7Gf66BJvD_lQe0dPZ1yj90PZ2dOZLLc14QThhHKf_XR-JmTmx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478171570</pqid></control><display><type>article</type><title>Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model</title><source>Free E- Journals</source><creator>Başkan, K ; Kürkçüoǧlu, S</creator><creatorcontrib>Başkan, K ; Kürkçüoǧlu, S</creatorcontrib><description>We study the effects of addition of Chern-Simons (CS) term in the minimal Yang Mills (YM) matrix model composed of two \(2 \times 2\) matrices with \(SU(2)\) gauge and \(SO(2)\) global symmetry. We obtain the Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the values of both the CS coupling, \(\kappa\), and the conserved conjugate momentum, \(p_\phi\), associated to the \(SO(2)\) symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov exponents and plotting the Poincar\'{e} sections as these two parameters are varied and, in particular, find that the largest Lyapunov exponents evaluated within a range of values of \(\kappa\) are above that is computed at \(\kappa=0\), for \(\kappa p_\phi < 0\). We also give estimates of the critical exponents for the Lyapunov exponent as the system transits from the chatoic to non-chaotic phase with \(p_\phi\) approaching to a critical value.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.05649</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chaos theory ; Liapunov exponents ; Matrix methods ; Symmetry</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Başkan, K</creatorcontrib><creatorcontrib>Kürkçüoǧlu, S</creatorcontrib><title>Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model</title><title>arXiv.org</title><description>We study the effects of addition of Chern-Simons (CS) term in the minimal Yang Mills (YM) matrix model composed of two \(2 \times 2\) matrices with \(SU(2)\) gauge and \(SO(2)\) global symmetry. We obtain the Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the values of both the CS coupling, \(\kappa\), and the conserved conjugate momentum, \(p_\phi\), associated to the \(SO(2)\) symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov exponents and plotting the Poincar\'{e} sections as these two parameters are varied and, in particular, find that the largest Lyapunov exponents evaluated within a range of values of \(\kappa\) are above that is computed at \(\kappa=0\), for \(\kappa p_\phi < 0\). We also give estimates of the critical exponents for the Lyapunov exponent as the system transits from the chatoic to non-chaotic phase with \(p_\phi\) approaching to a critical value.</description><subject>Chaos theory</subject><subject>Liapunov exponents</subject><subject>Matrix methods</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgjAAgOERBEn5AN0GXfQw26ZzdpaiiyfrEAgyaOVkbbVp-Ph16AE6_YfvB2BNcJIVjOGtcJN6J5RgkmCWZ7sZCGiaElRklC5A6H2PMaY5p4ylAeBlJ6yHysAmqs8RjZsYXoS5o0pp7WHZSWdQrR7WeFiJwakJVvYq9QrMb0J7Gf66BJvD_lQe0dPZ1yj90PZ2dOZLLc14QThhHKf_XR-JmTmx</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Başkan, K</creator><creator>Kürkçüoǧlu, S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210816</creationdate><title>Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model</title><author>Başkan, K ; Kürkçüoǧlu, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24781715703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chaos theory</topic><topic>Liapunov exponents</topic><topic>Matrix methods</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Başkan, K</creatorcontrib><creatorcontrib>Kürkçüoǧlu, S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Başkan, K</au><au>Kürkçüoǧlu, S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model</atitle><jtitle>arXiv.org</jtitle><date>2021-08-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the effects of addition of Chern-Simons (CS) term in the minimal Yang Mills (YM) matrix model composed of two \(2 \times 2\) matrices with \(SU(2)\) gauge and \(SO(2)\) global symmetry. We obtain the Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the values of both the CS coupling, \(\kappa\), and the conserved conjugate momentum, \(p_\phi\), associated to the \(SO(2)\) symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov exponents and plotting the Poincar\'{e} sections as these two parameters are varied and, in particular, find that the largest Lyapunov exponents evaluated within a range of values of \(\kappa\) are above that is computed at \(\kappa=0\), for \(\kappa p_\phi < 0\). We also give estimates of the critical exponents for the Lyapunov exponent as the system transits from the chatoic to non-chaotic phase with \(p_\phi\) approaching to a critical value.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.05649</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2478171570 |
source | Free E- Journals |
subjects | Chaos theory Liapunov exponents Matrix methods Symmetry |
title | Chaos in \(SU(2)\) Yang-Mills Chern-Simons Matrix Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Chaos%20in%20%5C(SU(2)%5C)%20Yang-Mills%20Chern-Simons%20Matrix%20Model&rft.jtitle=arXiv.org&rft.au=Ba%C5%9Fkan,%20K&rft.date=2021-08-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.05649&rft_dat=%3Cproquest%3E2478171570%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478171570&rft_id=info:pmid/&rfr_iscdi=true |