Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food
BACKGROUND Aflatoxin B1 (AFB1) is the most commonly occurring and the most toxic of all aflatoxins (AFs). It is responsible for liver cancer in animals and it is listed as a Group I carcinogen by the International Agency for Research on Cancer. Thus, it is necessary to find decontamination methods t...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2019-04, Vol.94 (4), p.1187-1194 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1194 |
---|---|
container_issue | 4 |
container_start_page | 1187 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 94 |
creator | Marimón Sibaja, Karen Vanessa de Oliveira Garcia, Sabrina Feltrin, Ana Carla Penteado Diaz Remedi, Rafael Cerqueira, Maristela Barnes Rodrigues Badiale‐Furlong, Eliana Garda‐Buffon, Jaqueline |
description | BACKGROUND
Aflatoxin B1 (AFB1) is the most commonly occurring and the most toxic of all aflatoxins (AFs). It is responsible for liver cancer in animals and it is listed as a Group I carcinogen by the International Agency for Research on Cancer. Thus, it is necessary to find decontamination methods that show efficiency, specificity, low cost, and that allow the disposal of contaminated raw materials into the environment. This study evaluated the effects of enzyme concentration, pH, temperature and reaction time on AFB1 biotransformation by commercial peroxidase (POD) in a model solution (100 mmol L−1 phosphate buffer).
RESULTS
When 0.015 U mL−1 was used to treat 0.5 µg L−1 of AFB1, at pH 7.0–8.0 and 30–40 °C, for 8.0 h, the AFB1 biotransformation reached its maximum (97%). KM value of POD for the biotransformation of AFB1 was 0.0160 µmol L−1 (5 µg L−1) with a VMAX of 6.4 µmol L−1 min−1, which were determined based on Lineweaver‐Burk's plot. POD (0.015 U mL−1) effectively reduces AFB1 (97%) and M1 (65%) in UHT milk and AFB1 (24%) in lager beer samples acquired in markets of Rio Grande‐RS (Brazil).
CONCLUSION
The use of POD may be a strategy to mitigate the impact of AFs found in food to reduce the risk of consumer exposure. © 2018 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.5865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478165488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478165488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3345-ad55986f986499c67fe44443c38623464c8b2b213f9f77527df1fb72640eab083</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_AcBTx7qpvnucV38ZMHLepSQpglkaZuaZNH997bWqwPDwPDMO_AAcF2iuxIhvNqbXN8xydkJWJSoEgXlHJ2CBcJcFpgJdg4uUtojhLjEfAE-1q7VOXz7HtY-5Kj75ELsdPZh3ByhCV1no_G6hYONI9foZKHuG-hzgnoYWm9meEwwoc-6873OtoEuhOYSnDndJnv1N5fg_fFht3kutm9PL5v1tjCEUFbohrFKcjc2rSrDhbN0LGKI5JhQTo2scY1L4ionBMOicaWrBeYUWV0jSZbgZs4dYvg82JTVPhxiP75UmApZckblRN3OlIkhpWidGqLvdDyqEqnJnprsqcneyK5m9su39vg_qF43u_vfix8JFHI6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478165488</pqid></control><display><type>article</type><title>Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Marimón Sibaja, Karen Vanessa ; de Oliveira Garcia, Sabrina ; Feltrin, Ana Carla Penteado ; Diaz Remedi, Rafael ; Cerqueira, Maristela Barnes Rodrigues ; Badiale‐Furlong, Eliana ; Garda‐Buffon, Jaqueline</creator><creatorcontrib>Marimón Sibaja, Karen Vanessa ; de Oliveira Garcia, Sabrina ; Feltrin, Ana Carla Penteado ; Diaz Remedi, Rafael ; Cerqueira, Maristela Barnes Rodrigues ; Badiale‐Furlong, Eliana ; Garda‐Buffon, Jaqueline</creatorcontrib><description>BACKGROUND
Aflatoxin B1 (AFB1) is the most commonly occurring and the most toxic of all aflatoxins (AFs). It is responsible for liver cancer in animals and it is listed as a Group I carcinogen by the International Agency for Research on Cancer. Thus, it is necessary to find decontamination methods that show efficiency, specificity, low cost, and that allow the disposal of contaminated raw materials into the environment. This study evaluated the effects of enzyme concentration, pH, temperature and reaction time on AFB1 biotransformation by commercial peroxidase (POD) in a model solution (100 mmol L−1 phosphate buffer).
RESULTS
When 0.015 U mL−1 was used to treat 0.5 µg L−1 of AFB1, at pH 7.0–8.0 and 30–40 °C, for 8.0 h, the AFB1 biotransformation reached its maximum (97%). KM value of POD for the biotransformation of AFB1 was 0.0160 µmol L−1 (5 µg L−1) with a VMAX of 6.4 µmol L−1 min−1, which were determined based on Lineweaver‐Burk's plot. POD (0.015 U mL−1) effectively reduces AFB1 (97%) and M1 (65%) in UHT milk and AFB1 (24%) in lager beer samples acquired in markets of Rio Grande‐RS (Brazil).
CONCLUSION
The use of POD may be a strategy to mitigate the impact of AFs found in food to reduce the risk of consumer exposure. © 2018 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5865</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>aflatoxin ; Aflatoxin B1 ; Aflatoxins ; beer ; Biotransformation ; Carcinogens ; Decontamination ; degradation ; Environmental effects ; enzymatic kinetics ; Food ; Food contamination ; Food contamination & poisoning ; Lager ; Liver cancer ; Milk ; Peroxidase ; pH effects ; Raw materials ; Reaction time ; Risk reduction</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2019-04, Vol.94 (4), p.1187-1194</ispartof><rights>2018 Society of Chemical Industry</rights><rights>Copyright © 2019 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3345-ad55986f986499c67fe44443c38623464c8b2b213f9f77527df1fb72640eab083</citedby><cites>FETCH-LOGICAL-c3345-ad55986f986499c67fe44443c38623464c8b2b213f9f77527df1fb72640eab083</cites><orcidid>0000-0002-7699-6217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.5865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.5865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Marimón Sibaja, Karen Vanessa</creatorcontrib><creatorcontrib>de Oliveira Garcia, Sabrina</creatorcontrib><creatorcontrib>Feltrin, Ana Carla Penteado</creatorcontrib><creatorcontrib>Diaz Remedi, Rafael</creatorcontrib><creatorcontrib>Cerqueira, Maristela Barnes Rodrigues</creatorcontrib><creatorcontrib>Badiale‐Furlong, Eliana</creatorcontrib><creatorcontrib>Garda‐Buffon, Jaqueline</creatorcontrib><title>Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Aflatoxin B1 (AFB1) is the most commonly occurring and the most toxic of all aflatoxins (AFs). It is responsible for liver cancer in animals and it is listed as a Group I carcinogen by the International Agency for Research on Cancer. Thus, it is necessary to find decontamination methods that show efficiency, specificity, low cost, and that allow the disposal of contaminated raw materials into the environment. This study evaluated the effects of enzyme concentration, pH, temperature and reaction time on AFB1 biotransformation by commercial peroxidase (POD) in a model solution (100 mmol L−1 phosphate buffer).
RESULTS
When 0.015 U mL−1 was used to treat 0.5 µg L−1 of AFB1, at pH 7.0–8.0 and 30–40 °C, for 8.0 h, the AFB1 biotransformation reached its maximum (97%). KM value of POD for the biotransformation of AFB1 was 0.0160 µmol L−1 (5 µg L−1) with a VMAX of 6.4 µmol L−1 min−1, which were determined based on Lineweaver‐Burk's plot. POD (0.015 U mL−1) effectively reduces AFB1 (97%) and M1 (65%) in UHT milk and AFB1 (24%) in lager beer samples acquired in markets of Rio Grande‐RS (Brazil).
CONCLUSION
The use of POD may be a strategy to mitigate the impact of AFs found in food to reduce the risk of consumer exposure. © 2018 Society of Chemical Industry</description><subject>aflatoxin</subject><subject>Aflatoxin B1</subject><subject>Aflatoxins</subject><subject>beer</subject><subject>Biotransformation</subject><subject>Carcinogens</subject><subject>Decontamination</subject><subject>degradation</subject><subject>Environmental effects</subject><subject>enzymatic kinetics</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food contamination & poisoning</subject><subject>Lager</subject><subject>Liver cancer</subject><subject>Milk</subject><subject>Peroxidase</subject><subject>pH effects</subject><subject>Raw materials</subject><subject>Reaction time</subject><subject>Risk reduction</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_AcBTx7qpvnucV38ZMHLepSQpglkaZuaZNH997bWqwPDwPDMO_AAcF2iuxIhvNqbXN8xydkJWJSoEgXlHJ2CBcJcFpgJdg4uUtojhLjEfAE-1q7VOXz7HtY-5Kj75ELsdPZh3ByhCV1no_G6hYONI9foZKHuG-hzgnoYWm9meEwwoc-6873OtoEuhOYSnDndJnv1N5fg_fFht3kutm9PL5v1tjCEUFbohrFKcjc2rSrDhbN0LGKI5JhQTo2scY1L4ionBMOicaWrBeYUWV0jSZbgZs4dYvg82JTVPhxiP75UmApZckblRN3OlIkhpWidGqLvdDyqEqnJnprsqcneyK5m9su39vg_qF43u_vfix8JFHI6</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Marimón Sibaja, Karen Vanessa</creator><creator>de Oliveira Garcia, Sabrina</creator><creator>Feltrin, Ana Carla Penteado</creator><creator>Diaz Remedi, Rafael</creator><creator>Cerqueira, Maristela Barnes Rodrigues</creator><creator>Badiale‐Furlong, Eliana</creator><creator>Garda‐Buffon, Jaqueline</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7699-6217</orcidid></search><sort><creationdate>201904</creationdate><title>Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food</title><author>Marimón Sibaja, Karen Vanessa ; de Oliveira Garcia, Sabrina ; Feltrin, Ana Carla Penteado ; Diaz Remedi, Rafael ; Cerqueira, Maristela Barnes Rodrigues ; Badiale‐Furlong, Eliana ; Garda‐Buffon, Jaqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3345-ad55986f986499c67fe44443c38623464c8b2b213f9f77527df1fb72640eab083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aflatoxin</topic><topic>Aflatoxin B1</topic><topic>Aflatoxins</topic><topic>beer</topic><topic>Biotransformation</topic><topic>Carcinogens</topic><topic>Decontamination</topic><topic>degradation</topic><topic>Environmental effects</topic><topic>enzymatic kinetics</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food contamination & poisoning</topic><topic>Lager</topic><topic>Liver cancer</topic><topic>Milk</topic><topic>Peroxidase</topic><topic>pH effects</topic><topic>Raw materials</topic><topic>Reaction time</topic><topic>Risk reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marimón Sibaja, Karen Vanessa</creatorcontrib><creatorcontrib>de Oliveira Garcia, Sabrina</creatorcontrib><creatorcontrib>Feltrin, Ana Carla Penteado</creatorcontrib><creatorcontrib>Diaz Remedi, Rafael</creatorcontrib><creatorcontrib>Cerqueira, Maristela Barnes Rodrigues</creatorcontrib><creatorcontrib>Badiale‐Furlong, Eliana</creatorcontrib><creatorcontrib>Garda‐Buffon, Jaqueline</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marimón Sibaja, Karen Vanessa</au><au>de Oliveira Garcia, Sabrina</au><au>Feltrin, Ana Carla Penteado</au><au>Diaz Remedi, Rafael</au><au>Cerqueira, Maristela Barnes Rodrigues</au><au>Badiale‐Furlong, Eliana</au><au>Garda‐Buffon, Jaqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2019-04</date><risdate>2019</risdate><volume>94</volume><issue>4</issue><spage>1187</spage><epage>1194</epage><pages>1187-1194</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Aflatoxin B1 (AFB1) is the most commonly occurring and the most toxic of all aflatoxins (AFs). It is responsible for liver cancer in animals and it is listed as a Group I carcinogen by the International Agency for Research on Cancer. Thus, it is necessary to find decontamination methods that show efficiency, specificity, low cost, and that allow the disposal of contaminated raw materials into the environment. This study evaluated the effects of enzyme concentration, pH, temperature and reaction time on AFB1 biotransformation by commercial peroxidase (POD) in a model solution (100 mmol L−1 phosphate buffer).
RESULTS
When 0.015 U mL−1 was used to treat 0.5 µg L−1 of AFB1, at pH 7.0–8.0 and 30–40 °C, for 8.0 h, the AFB1 biotransformation reached its maximum (97%). KM value of POD for the biotransformation of AFB1 was 0.0160 µmol L−1 (5 µg L−1) with a VMAX of 6.4 µmol L−1 min−1, which were determined based on Lineweaver‐Burk's plot. POD (0.015 U mL−1) effectively reduces AFB1 (97%) and M1 (65%) in UHT milk and AFB1 (24%) in lager beer samples acquired in markets of Rio Grande‐RS (Brazil).
CONCLUSION
The use of POD may be a strategy to mitigate the impact of AFs found in food to reduce the risk of consumer exposure. © 2018 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.5865</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7699-6217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2019-04, Vol.94 (4), p.1187-1194 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_2478165488 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aflatoxin Aflatoxin B1 Aflatoxins beer Biotransformation Carcinogens Decontamination degradation Environmental effects enzymatic kinetics Food Food contamination Food contamination & poisoning Lager Liver cancer Milk Peroxidase pH effects Raw materials Reaction time Risk reduction |
title | Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aflatoxin%20biotransformation%20by%20commercial%20peroxidase%20and%20its%20application%20in%20contaminated%20food&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Marim%C3%B3n%20Sibaja,%20Karen%20Vanessa&rft.date=2019-04&rft.volume=94&rft.issue=4&rft.spage=1187&rft.epage=1194&rft.pages=1187-1194&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5865&rft_dat=%3Cproquest_cross%3E2478165488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478165488&rft_id=info:pmid/&rfr_iscdi=true |