PAM-less plant genome editing using a CRISPR–SpRY toolbox

The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2021, Vol.7 (1), p.25-33
Hauptverfasser: Ren, Qiurong, Sretenovic, Simon, Liu, Shishi, Tang, Xu, Huang, Lan, He, Yao, Liu, Li, Guo, Yachong, Zhong, Zhaohui, Liu, Guanqing, Cheng, Yanhao, Zheng, Xuelian, Pan, Changtian, Yin, Desuo, Zhang, Yingxiao, Li, Wanfeng, Qi, Liwang, Li, Chenghao, Qi, Yiping, Zhang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 25
container_title Nature plants
container_volume 7
creator Ren, Qiurong
Sretenovic, Simon
Liu, Shishi
Tang, Xu
Huang, Lan
He, Yao
Liu, Li
Guo, Yachong
Zhong, Zhaohui
Liu, Guanqing
Cheng, Yanhao
Zheng, Xuelian
Pan, Changtian
Yin, Desuo
Zhang, Yingxiao
Li, Wanfeng
Qi, Liwang
Li, Chenghao
Qi, Yiping
Zhang, Yong
description The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G) 7 , limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant 8 . Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9 ) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox. An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.
doi_str_mv 10.1038/s41477-020-00827-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2478164536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478164536</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdBbNG-gAsJuB69NzOZmeCqFH8KFUurC1dDJjMpLWkSMwnoznfwDX0Sp7bi5l649-McziHkHOEKgalrz5FLSSEGCqBiSfkRGcaQJOEk1YCMvN8AAMokYQJOyIAxlipM1JDczMePtHTeR02ZVV20clW9dZGz625draLe72YWTRbT5Xzx_fm1bBavUVfXpanfz8hxkZXejQ77lLzc3T5PHujs6X46Gc9ogwo6qjLBReFyKyUgSIfBXZjMcmO4cUyiE8qwVIIpUFjMLUuc4pjnaF2eFik7JZd73aat33rnO72p-7YKljrmUqHgIVagLg5Ub7bO6qZdb7P2Q_9lDQDbAz68qpVr_2UQ9K5IvS9ShyL1b5Gasx_ff2Q_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478164536</pqid></control><display><type>article</type><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</creator><creatorcontrib>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</creatorcontrib><description>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G) 7 , limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant 8 . Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9 ) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox. An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</description><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-020-00827-4</identifier><identifier>PMID: 33398158</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/70 ; 631/1647/1511 ; 631/449/447/2311 ; Adenine ; B30.2-SPRY Domain - genetics ; Biomedical and Life Sciences ; Coniferous trees ; CRISPR ; CRISPR-Associated Protein 9 ; CRISPR-Associated Proteins ; CRISPR-Cas Systems ; Cytosine ; Deoxyribonucleic acid ; Directed evolution ; DNA ; Gene Editing - methods ; Genetic modification ; Genome, Plant - genetics ; Genomes ; Herbicide resistance ; Herbicides ; Homology ; Larix - genetics ; Letter ; Life Sciences ; Non-homologous end joining ; Nuclease ; Oryza - genetics ; Plant Sciences ; Protoplasts ; Rice ; Site-directed mutagenesis</subject><ispartof>Nature plants, 2021, Vol.7 (1), p.25-33</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</cites><orcidid>0000-0002-9556-6706 ; 0000-0002-5852-059X ; 0000-0003-0916-0409 ; 0000-0002-3080-5104 ; 0000-0002-7475-7888 ; 0000-0003-3704-4835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-020-00827-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-020-00827-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Qiurong</creatorcontrib><creatorcontrib>Sretenovic, Simon</creatorcontrib><creatorcontrib>Liu, Shishi</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Guo, Yachong</creatorcontrib><creatorcontrib>Zhong, Zhaohui</creatorcontrib><creatorcontrib>Liu, Guanqing</creatorcontrib><creatorcontrib>Cheng, Yanhao</creatorcontrib><creatorcontrib>Zheng, Xuelian</creatorcontrib><creatorcontrib>Pan, Changtian</creatorcontrib><creatorcontrib>Yin, Desuo</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Li, Wanfeng</creatorcontrib><creatorcontrib>Qi, Liwang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G) 7 , limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant 8 . Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9 ) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox. An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</description><subject>45/70</subject><subject>631/1647/1511</subject><subject>631/449/447/2311</subject><subject>Adenine</subject><subject>B30.2-SPRY Domain - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Coniferous trees</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9</subject><subject>CRISPR-Associated Proteins</subject><subject>CRISPR-Cas Systems</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>DNA</subject><subject>Gene Editing - methods</subject><subject>Genetic modification</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Homology</subject><subject>Larix - genetics</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Non-homologous end joining</subject><subject>Nuclease</subject><subject>Oryza - genetics</subject><subject>Plant Sciences</subject><subject>Protoplasts</subject><subject>Rice</subject><subject>Site-directed mutagenesis</subject><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkM1Kw0AUhQdBbNG-gAsJuB69NzOZmeCqFH8KFUurC1dDJjMpLWkSMwnoznfwDX0Sp7bi5l649-McziHkHOEKgalrz5FLSSEGCqBiSfkRGcaQJOEk1YCMvN8AAMokYQJOyIAxlipM1JDczMePtHTeR02ZVV20clW9dZGz625draLe72YWTRbT5Xzx_fm1bBavUVfXpanfz8hxkZXejQ77lLzc3T5PHujs6X46Gc9ogwo6qjLBReFyKyUgSIfBXZjMcmO4cUyiE8qwVIIpUFjMLUuc4pjnaF2eFik7JZd73aat33rnO72p-7YKljrmUqHgIVagLg5Ub7bO6qZdb7P2Q_9lDQDbAz68qpVr_2UQ9K5IvS9ShyL1b5Gasx_ff2Q_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ren, Qiurong</creator><creator>Sretenovic, Simon</creator><creator>Liu, Shishi</creator><creator>Tang, Xu</creator><creator>Huang, Lan</creator><creator>He, Yao</creator><creator>Liu, Li</creator><creator>Guo, Yachong</creator><creator>Zhong, Zhaohui</creator><creator>Liu, Guanqing</creator><creator>Cheng, Yanhao</creator><creator>Zheng, Xuelian</creator><creator>Pan, Changtian</creator><creator>Yin, Desuo</creator><creator>Zhang, Yingxiao</creator><creator>Li, Wanfeng</creator><creator>Qi, Liwang</creator><creator>Li, Chenghao</creator><creator>Qi, Yiping</creator><creator>Zhang, Yong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9556-6706</orcidid><orcidid>https://orcid.org/0000-0002-5852-059X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0409</orcidid><orcidid>https://orcid.org/0000-0002-3080-5104</orcidid><orcidid>https://orcid.org/0000-0002-7475-7888</orcidid><orcidid>https://orcid.org/0000-0003-3704-4835</orcidid></search><sort><creationdate>2021</creationdate><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><author>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/70</topic><topic>631/1647/1511</topic><topic>631/449/447/2311</topic><topic>Adenine</topic><topic>B30.2-SPRY Domain - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Coniferous trees</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9</topic><topic>CRISPR-Associated Proteins</topic><topic>CRISPR-Cas Systems</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>DNA</topic><topic>Gene Editing - methods</topic><topic>Genetic modification</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Homology</topic><topic>Larix - genetics</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Non-homologous end joining</topic><topic>Nuclease</topic><topic>Oryza - genetics</topic><topic>Plant Sciences</topic><topic>Protoplasts</topic><topic>Rice</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Qiurong</creatorcontrib><creatorcontrib>Sretenovic, Simon</creatorcontrib><creatorcontrib>Liu, Shishi</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Guo, Yachong</creatorcontrib><creatorcontrib>Zhong, Zhaohui</creatorcontrib><creatorcontrib>Liu, Guanqing</creatorcontrib><creatorcontrib>Cheng, Yanhao</creatorcontrib><creatorcontrib>Zheng, Xuelian</creatorcontrib><creatorcontrib>Pan, Changtian</creatorcontrib><creatorcontrib>Yin, Desuo</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Li, Wanfeng</creatorcontrib><creatorcontrib>Qi, Liwang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Qiurong</au><au>Sretenovic, Simon</au><au>Liu, Shishi</au><au>Tang, Xu</au><au>Huang, Lan</au><au>He, Yao</au><au>Liu, Li</au><au>Guo, Yachong</au><au>Zhong, Zhaohui</au><au>Liu, Guanqing</au><au>Cheng, Yanhao</au><au>Zheng, Xuelian</au><au>Pan, Changtian</au><au>Yin, Desuo</au><au>Zhang, Yingxiao</au><au>Li, Wanfeng</au><au>Qi, Liwang</au><au>Li, Chenghao</au><au>Qi, Yiping</au><au>Zhang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAM-less plant genome editing using a CRISPR–SpRY toolbox</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>25</spage><epage>33</epage><pages>25-33</pages><eissn>2055-0278</eissn><abstract>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G) 7 , limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant 8 . Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9 ) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox. An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33398158</pmid><doi>10.1038/s41477-020-00827-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9556-6706</orcidid><orcidid>https://orcid.org/0000-0002-5852-059X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0409</orcidid><orcidid>https://orcid.org/0000-0002-3080-5104</orcidid><orcidid>https://orcid.org/0000-0002-7475-7888</orcidid><orcidid>https://orcid.org/0000-0003-3704-4835</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2055-0278
ispartof Nature plants, 2021, Vol.7 (1), p.25-33
issn 2055-0278
language eng
recordid cdi_proquest_journals_2478164536
source MEDLINE; SpringerLink Journals; Nature
subjects 45/70
631/1647/1511
631/449/447/2311
Adenine
B30.2-SPRY Domain - genetics
Biomedical and Life Sciences
Coniferous trees
CRISPR
CRISPR-Associated Protein 9
CRISPR-Associated Proteins
CRISPR-Cas Systems
Cytosine
Deoxyribonucleic acid
Directed evolution
DNA
Gene Editing - methods
Genetic modification
Genome, Plant - genetics
Genomes
Herbicide resistance
Herbicides
Homology
Larix - genetics
Letter
Life Sciences
Non-homologous end joining
Nuclease
Oryza - genetics
Plant Sciences
Protoplasts
Rice
Site-directed mutagenesis
title PAM-less plant genome editing using a CRISPR–SpRY toolbox
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAM-less%20plant%20genome%20editing%20using%20a%20CRISPR%E2%80%93SpRY%20toolbox&rft.jtitle=Nature%20plants&rft.au=Ren,%20Qiurong&rft.date=2021&rft.volume=7&rft.issue=1&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-020-00827-4&rft_dat=%3Cproquest_pubme%3E2478164536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478164536&rft_id=info:pmid/33398158&rfr_iscdi=true