PAM-less plant genome editing using a CRISPR–SpRY toolbox
The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research 1 – 6 . DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular S...
Gespeichert in:
Veröffentlicht in: | Nature plants 2021, Vol.7 (1), p.25-33 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Nature plants |
container_volume | 7 |
creator | Ren, Qiurong Sretenovic, Simon Liu, Shishi Tang, Xu Huang, Lan He, Yao Liu, Li Guo, Yachong Zhong, Zhaohui Liu, Guanqing Cheng, Yanhao Zheng, Xuelian Pan, Changtian Yin, Desuo Zhang, Yingxiao Li, Wanfeng Qi, Liwang Li, Chenghao Qi, Yiping Zhang, Yong |
description | The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research
1
–
6
. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular
Streptococcus pyogenes
Cas9 (SpCas9) is NGG (N = A, T, C, G)
7
, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant
8
. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant
OsALS
alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref.
9
) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.
An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too. |
doi_str_mv | 10.1038/s41477-020-00827-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2478164536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478164536</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdBbNG-gAsJuB69NzOZmeCqFH8KFUurC1dDJjMpLWkSMwnoznfwDX0Sp7bi5l649-McziHkHOEKgalrz5FLSSEGCqBiSfkRGcaQJOEk1YCMvN8AAMokYQJOyIAxlipM1JDczMePtHTeR02ZVV20clW9dZGz625draLe72YWTRbT5Xzx_fm1bBavUVfXpanfz8hxkZXejQ77lLzc3T5PHujs6X46Gc9ogwo6qjLBReFyKyUgSIfBXZjMcmO4cUyiE8qwVIIpUFjMLUuc4pjnaF2eFik7JZd73aat33rnO72p-7YKljrmUqHgIVagLg5Ub7bO6qZdb7P2Q_9lDQDbAz68qpVr_2UQ9K5IvS9ShyL1b5Gasx_ff2Q_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478164536</pqid></control><display><type>article</type><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</creator><creatorcontrib>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</creatorcontrib><description>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research
1
–
6
. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular
Streptococcus pyogenes
Cas9 (SpCas9) is NGG (N = A, T, C, G)
7
, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant
8
. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant
OsALS
alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref.
9
) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.
An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</description><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-020-00827-4</identifier><identifier>PMID: 33398158</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/70 ; 631/1647/1511 ; 631/449/447/2311 ; Adenine ; B30.2-SPRY Domain - genetics ; Biomedical and Life Sciences ; Coniferous trees ; CRISPR ; CRISPR-Associated Protein 9 ; CRISPR-Associated Proteins ; CRISPR-Cas Systems ; Cytosine ; Deoxyribonucleic acid ; Directed evolution ; DNA ; Gene Editing - methods ; Genetic modification ; Genome, Plant - genetics ; Genomes ; Herbicide resistance ; Herbicides ; Homology ; Larix - genetics ; Letter ; Life Sciences ; Non-homologous end joining ; Nuclease ; Oryza - genetics ; Plant Sciences ; Protoplasts ; Rice ; Site-directed mutagenesis</subject><ispartof>Nature plants, 2021, Vol.7 (1), p.25-33</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</cites><orcidid>0000-0002-9556-6706 ; 0000-0002-5852-059X ; 0000-0003-0916-0409 ; 0000-0002-3080-5104 ; 0000-0002-7475-7888 ; 0000-0003-3704-4835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-020-00827-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-020-00827-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Qiurong</creatorcontrib><creatorcontrib>Sretenovic, Simon</creatorcontrib><creatorcontrib>Liu, Shishi</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Guo, Yachong</creatorcontrib><creatorcontrib>Zhong, Zhaohui</creatorcontrib><creatorcontrib>Liu, Guanqing</creatorcontrib><creatorcontrib>Cheng, Yanhao</creatorcontrib><creatorcontrib>Zheng, Xuelian</creatorcontrib><creatorcontrib>Pan, Changtian</creatorcontrib><creatorcontrib>Yin, Desuo</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Li, Wanfeng</creatorcontrib><creatorcontrib>Qi, Liwang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research
1
–
6
. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular
Streptococcus pyogenes
Cas9 (SpCas9) is NGG (N = A, T, C, G)
7
, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant
8
. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant
OsALS
alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref.
9
) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.
An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</description><subject>45/70</subject><subject>631/1647/1511</subject><subject>631/449/447/2311</subject><subject>Adenine</subject><subject>B30.2-SPRY Domain - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Coniferous trees</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9</subject><subject>CRISPR-Associated Proteins</subject><subject>CRISPR-Cas Systems</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>DNA</subject><subject>Gene Editing - methods</subject><subject>Genetic modification</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Homology</subject><subject>Larix - genetics</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Non-homologous end joining</subject><subject>Nuclease</subject><subject>Oryza - genetics</subject><subject>Plant Sciences</subject><subject>Protoplasts</subject><subject>Rice</subject><subject>Site-directed mutagenesis</subject><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkM1Kw0AUhQdBbNG-gAsJuB69NzOZmeCqFH8KFUurC1dDJjMpLWkSMwnoznfwDX0Sp7bi5l649-McziHkHOEKgalrz5FLSSEGCqBiSfkRGcaQJOEk1YCMvN8AAMokYQJOyIAxlipM1JDczMePtHTeR02ZVV20clW9dZGz625draLe72YWTRbT5Xzx_fm1bBavUVfXpanfz8hxkZXejQ77lLzc3T5PHujs6X46Gc9ogwo6qjLBReFyKyUgSIfBXZjMcmO4cUyiE8qwVIIpUFjMLUuc4pjnaF2eFik7JZd73aat33rnO72p-7YKljrmUqHgIVagLg5Ub7bO6qZdb7P2Q_9lDQDbAz68qpVr_2UQ9K5IvS9ShyL1b5Gasx_ff2Q_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ren, Qiurong</creator><creator>Sretenovic, Simon</creator><creator>Liu, Shishi</creator><creator>Tang, Xu</creator><creator>Huang, Lan</creator><creator>He, Yao</creator><creator>Liu, Li</creator><creator>Guo, Yachong</creator><creator>Zhong, Zhaohui</creator><creator>Liu, Guanqing</creator><creator>Cheng, Yanhao</creator><creator>Zheng, Xuelian</creator><creator>Pan, Changtian</creator><creator>Yin, Desuo</creator><creator>Zhang, Yingxiao</creator><creator>Li, Wanfeng</creator><creator>Qi, Liwang</creator><creator>Li, Chenghao</creator><creator>Qi, Yiping</creator><creator>Zhang, Yong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9556-6706</orcidid><orcidid>https://orcid.org/0000-0002-5852-059X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0409</orcidid><orcidid>https://orcid.org/0000-0002-3080-5104</orcidid><orcidid>https://orcid.org/0000-0002-7475-7888</orcidid><orcidid>https://orcid.org/0000-0003-3704-4835</orcidid></search><sort><creationdate>2021</creationdate><title>PAM-less plant genome editing using a CRISPR–SpRY toolbox</title><author>Ren, Qiurong ; Sretenovic, Simon ; Liu, Shishi ; Tang, Xu ; Huang, Lan ; He, Yao ; Liu, Li ; Guo, Yachong ; Zhong, Zhaohui ; Liu, Guanqing ; Cheng, Yanhao ; Zheng, Xuelian ; Pan, Changtian ; Yin, Desuo ; Zhang, Yingxiao ; Li, Wanfeng ; Qi, Liwang ; Li, Chenghao ; Qi, Yiping ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-8a646fecd770107e13336bad4bb4be371e68b3970bf16d1cd35e841cc1dec9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/70</topic><topic>631/1647/1511</topic><topic>631/449/447/2311</topic><topic>Adenine</topic><topic>B30.2-SPRY Domain - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Coniferous trees</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9</topic><topic>CRISPR-Associated Proteins</topic><topic>CRISPR-Cas Systems</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>DNA</topic><topic>Gene Editing - methods</topic><topic>Genetic modification</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Homology</topic><topic>Larix - genetics</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Non-homologous end joining</topic><topic>Nuclease</topic><topic>Oryza - genetics</topic><topic>Plant Sciences</topic><topic>Protoplasts</topic><topic>Rice</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Qiurong</creatorcontrib><creatorcontrib>Sretenovic, Simon</creatorcontrib><creatorcontrib>Liu, Shishi</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Guo, Yachong</creatorcontrib><creatorcontrib>Zhong, Zhaohui</creatorcontrib><creatorcontrib>Liu, Guanqing</creatorcontrib><creatorcontrib>Cheng, Yanhao</creatorcontrib><creatorcontrib>Zheng, Xuelian</creatorcontrib><creatorcontrib>Pan, Changtian</creatorcontrib><creatorcontrib>Yin, Desuo</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Li, Wanfeng</creatorcontrib><creatorcontrib>Qi, Liwang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Qiurong</au><au>Sretenovic, Simon</au><au>Liu, Shishi</au><au>Tang, Xu</au><au>Huang, Lan</au><au>He, Yao</au><au>Liu, Li</au><au>Guo, Yachong</au><au>Zhong, Zhaohui</au><au>Liu, Guanqing</au><au>Cheng, Yanhao</au><au>Zheng, Xuelian</au><au>Pan, Changtian</au><au>Yin, Desuo</au><au>Zhang, Yingxiao</au><au>Li, Wanfeng</au><au>Qi, Liwang</au><au>Li, Chenghao</au><au>Qi, Yiping</au><au>Zhang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAM-less plant genome editing using a CRISPR–SpRY toolbox</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>25</spage><epage>33</epage><pages>25-33</pages><eissn>2055-0278</eissn><abstract>The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research
1
–
6
. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular
Streptococcus pyogenes
Cas9 (SpCas9) is NGG (N = A, T, C, G)
7
, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant
8
. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant
OsALS
alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref.
9
) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.
An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33398158</pmid><doi>10.1038/s41477-020-00827-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9556-6706</orcidid><orcidid>https://orcid.org/0000-0002-5852-059X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0409</orcidid><orcidid>https://orcid.org/0000-0002-3080-5104</orcidid><orcidid>https://orcid.org/0000-0002-7475-7888</orcidid><orcidid>https://orcid.org/0000-0003-3704-4835</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2055-0278 |
ispartof | Nature plants, 2021, Vol.7 (1), p.25-33 |
issn | 2055-0278 |
language | eng |
recordid | cdi_proquest_journals_2478164536 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 45/70 631/1647/1511 631/449/447/2311 Adenine B30.2-SPRY Domain - genetics Biomedical and Life Sciences Coniferous trees CRISPR CRISPR-Associated Protein 9 CRISPR-Associated Proteins CRISPR-Cas Systems Cytosine Deoxyribonucleic acid Directed evolution DNA Gene Editing - methods Genetic modification Genome, Plant - genetics Genomes Herbicide resistance Herbicides Homology Larix - genetics Letter Life Sciences Non-homologous end joining Nuclease Oryza - genetics Plant Sciences Protoplasts Rice Site-directed mutagenesis |
title | PAM-less plant genome editing using a CRISPR–SpRY toolbox |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAM-less%20plant%20genome%20editing%20using%20a%20CRISPR%E2%80%93SpRY%20toolbox&rft.jtitle=Nature%20plants&rft.au=Ren,%20Qiurong&rft.date=2021&rft.volume=7&rft.issue=1&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-020-00827-4&rft_dat=%3Cproquest_pubme%3E2478164536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478164536&rft_id=info:pmid/33398158&rfr_iscdi=true |