Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network
Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Wu, Zhitong Zhou, Qianjun Wang, Feng |
description | Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works. |
doi_str_mv | 10.1109/ACCESS.2021.3049379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2478140008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314141</ieee_id><doaj_id>oai_doaj_org_article_f97bfaa180ba425c96704ba477da093b</doaj_id><sourcerecordid>2478140008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</originalsourceid><addsrcrecordid>eNpNUcFKxDAULKKgqF_gJeC560uTNs1R6qoLix5Wz-E1fd3tupto2iL-vVkrYnLIMMzMe2SS5IrDjHPQN7dVNV-tZhlkfCZAaqH0UXKW8UKnIhfF8T98mlz2_RbiKSOVq7PEVh5DT-ng0_vOEVuObs2efDPuiK1ovSc34NB5xzrHqhe22OOaevbZDZsJs7nboLN0EDJ0DbsbcZfWIXIb9kTDpw9vF8lJi7ueLn_f8-T1fv5SPabL54dFdbtMrYRySOvcSrKqaHMo4nJAUFolGk1tI1SrhawbjlC0BNAI0FZjgSAt1VmmOJEU58liym08bs176PYYvozHzvwQPqwNhqGzOzKtVnWLyEuoUWa51YUCGaFSDYIWdcy6nrLeg_8YqR_M1o_BxfVNJlXJ5eEPo0pMKht83wdq_6ZyMIdyzFSOOZRjfsuJrqvJ1RHRn0MLLuMV39DPiho</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478140008</pqid></control><display><type>article</type><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</creator><creatorcontrib>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</creatorcontrib><description>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049379</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Background noise ; Boundaries ; Computed tomography ; CT image ; Datasets ; Dual-branch network ; Feature extraction ; Image enhancement ; Image segmentation ; Learning ; Lesions ; Lung ; Lung nodule segmentation ; Lungs ; Medical imaging ; Neural networks ; Nodules ; Non-solitary nodule ; Task analysis</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</citedby><cites>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</cites><orcidid>0000-0002-9555-4481 ; 0000-0002-5773-8060 ; 0000-0002-4591-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314141$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wu, Zhitong</creatorcontrib><creatorcontrib>Zhou, Qianjun</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</description><subject>Background noise</subject><subject>Boundaries</subject><subject>Computed tomography</subject><subject>CT image</subject><subject>Datasets</subject><subject>Dual-branch network</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Lesions</subject><subject>Lung</subject><subject>Lung nodule segmentation</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>Non-solitary nodule</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKxDAULKKgqF_gJeC560uTNs1R6qoLix5Wz-E1fd3tupto2iL-vVkrYnLIMMzMe2SS5IrDjHPQN7dVNV-tZhlkfCZAaqH0UXKW8UKnIhfF8T98mlz2_RbiKSOVq7PEVh5DT-ng0_vOEVuObs2efDPuiK1ovSc34NB5xzrHqhe22OOaevbZDZsJs7nboLN0EDJ0DbsbcZfWIXIb9kTDpw9vF8lJi7ueLn_f8-T1fv5SPabL54dFdbtMrYRySOvcSrKqaHMo4nJAUFolGk1tI1SrhawbjlC0BNAI0FZjgSAt1VmmOJEU58liym08bs176PYYvozHzvwQPqwNhqGzOzKtVnWLyEuoUWa51YUCGaFSDYIWdcy6nrLeg_8YqR_M1o_BxfVNJlXJ5eEPo0pMKht83wdq_6ZyMIdyzFSOOZRjfsuJrqvJ1RHRn0MLLuMV39DPiho</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wu, Zhitong</creator><creator>Zhou, Qianjun</creator><creator>Wang, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9555-4481</orcidid><orcidid>https://orcid.org/0000-0002-5773-8060</orcidid><orcidid>https://orcid.org/0000-0002-4591-0329</orcidid></search><sort><creationdate>20210101</creationdate><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><author>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Background noise</topic><topic>Boundaries</topic><topic>Computed tomography</topic><topic>CT image</topic><topic>Datasets</topic><topic>Dual-branch network</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Lesions</topic><topic>Lung</topic><topic>Lung nodule segmentation</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>Non-solitary nodule</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhitong</creatorcontrib><creatorcontrib>Zhou, Qianjun</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhitong</au><au>Zhou, Qianjun</au><au>Wang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049379</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9555-4481</orcidid><orcidid>https://orcid.org/0000-0002-5773-8060</orcidid><orcidid>https://orcid.org/0000-0002-4591-0329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2478140008 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Background noise Boundaries Computed tomography CT image Datasets Dual-branch network Feature extraction Image enhancement Image segmentation Learning Lesions Lung Lung nodule segmentation Lungs Medical imaging Neural networks Nodules Non-solitary nodule Task analysis |
title | Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-to-Fine%20Lung%20Nodule%20Segmentation%20in%20CT%20Images%20with%20Image%20Enhancement%20and%20Dual-branch%20Network&rft.jtitle=IEEE%20access&rft.au=Wu,%20Zhitong&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049379&rft_dat=%3Cproquest_ieee_%3E2478140008%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478140008&rft_id=info:pmid/&rft_ieee_id=9314141&rft_doaj_id=oai_doaj_org_article_f97bfaa180ba425c96704ba477da093b&rfr_iscdi=true |