Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network

Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Wu, Zhitong, Zhou, Qianjun, Wang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Wu, Zhitong
Zhou, Qianjun
Wang, Feng
description Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.
doi_str_mv 10.1109/ACCESS.2021.3049379
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2478140008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314141</ieee_id><doaj_id>oai_doaj_org_article_f97bfaa180ba425c96704ba477da093b</doaj_id><sourcerecordid>2478140008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</originalsourceid><addsrcrecordid>eNpNUcFKxDAULKKgqF_gJeC560uTNs1R6qoLix5Wz-E1fd3tupto2iL-vVkrYnLIMMzMe2SS5IrDjHPQN7dVNV-tZhlkfCZAaqH0UXKW8UKnIhfF8T98mlz2_RbiKSOVq7PEVh5DT-ng0_vOEVuObs2efDPuiK1ovSc34NB5xzrHqhe22OOaevbZDZsJs7nboLN0EDJ0DbsbcZfWIXIb9kTDpw9vF8lJi7ueLn_f8-T1fv5SPabL54dFdbtMrYRySOvcSrKqaHMo4nJAUFolGk1tI1SrhawbjlC0BNAI0FZjgSAt1VmmOJEU58liym08bs176PYYvozHzvwQPqwNhqGzOzKtVnWLyEuoUWa51YUCGaFSDYIWdcy6nrLeg_8YqR_M1o_BxfVNJlXJ5eEPo0pMKht83wdq_6ZyMIdyzFSOOZRjfsuJrqvJ1RHRn0MLLuMV39DPiho</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478140008</pqid></control><display><type>article</type><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</creator><creatorcontrib>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</creatorcontrib><description>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049379</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Background noise ; Boundaries ; Computed tomography ; CT image ; Datasets ; Dual-branch network ; Feature extraction ; Image enhancement ; Image segmentation ; Learning ; Lesions ; Lung ; Lung nodule segmentation ; Lungs ; Medical imaging ; Neural networks ; Nodules ; Non-solitary nodule ; Task analysis</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</citedby><cites>FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</cites><orcidid>0000-0002-9555-4481 ; 0000-0002-5773-8060 ; 0000-0002-4591-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314141$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wu, Zhitong</creatorcontrib><creatorcontrib>Zhou, Qianjun</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</description><subject>Background noise</subject><subject>Boundaries</subject><subject>Computed tomography</subject><subject>CT image</subject><subject>Datasets</subject><subject>Dual-branch network</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Lesions</subject><subject>Lung</subject><subject>Lung nodule segmentation</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>Non-solitary nodule</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKxDAULKKgqF_gJeC560uTNs1R6qoLix5Wz-E1fd3tupto2iL-vVkrYnLIMMzMe2SS5IrDjHPQN7dVNV-tZhlkfCZAaqH0UXKW8UKnIhfF8T98mlz2_RbiKSOVq7PEVh5DT-ng0_vOEVuObs2efDPuiK1ovSc34NB5xzrHqhe22OOaevbZDZsJs7nboLN0EDJ0DbsbcZfWIXIb9kTDpw9vF8lJi7ueLn_f8-T1fv5SPabL54dFdbtMrYRySOvcSrKqaHMo4nJAUFolGk1tI1SrhawbjlC0BNAI0FZjgSAt1VmmOJEU58liym08bs176PYYvozHzvwQPqwNhqGzOzKtVnWLyEuoUWa51YUCGaFSDYIWdcy6nrLeg_8YqR_M1o_BxfVNJlXJ5eEPo0pMKht83wdq_6ZyMIdyzFSOOZRjfsuJrqvJ1RHRn0MLLuMV39DPiho</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wu, Zhitong</creator><creator>Zhou, Qianjun</creator><creator>Wang, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9555-4481</orcidid><orcidid>https://orcid.org/0000-0002-5773-8060</orcidid><orcidid>https://orcid.org/0000-0002-4591-0329</orcidid></search><sort><creationdate>20210101</creationdate><title>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</title><author>Wu, Zhitong ; Zhou, Qianjun ; Wang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b5c4ec76f5066950e08c73d9efd37f934bd1a06fe00d309c9a6a04ceb2271ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Background noise</topic><topic>Boundaries</topic><topic>Computed tomography</topic><topic>CT image</topic><topic>Datasets</topic><topic>Dual-branch network</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Lesions</topic><topic>Lung</topic><topic>Lung nodule segmentation</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>Non-solitary nodule</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhitong</creatorcontrib><creatorcontrib>Zhou, Qianjun</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhitong</au><au>Zhou, Qianjun</au><au>Wang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lung nodule segmentation in CT images plays an important role in clinical diagnosis and treatment of lung cancers. Among different types of nodules, the solitary nodules usually have clear boundaries and the segmentation is relatively easy, while the segmentation of non-solitary nodules with ambiguous boundaries remains challenging for both human and computer. In this paper, we propose a coarse-to-fine lung nodule segmentation method by combining image enhancement and a Dual-branch neural network. First, we preprocess the image to enhance the discrimination of the nodules and roughly locate the lesion area so that we can eliminate the noises from background and focus on learning the features around the boundaries. Second, we propose a Dual-branch network based on U-Net (DB U-Net) which can effectively explore information from both 2D slices and the relationships between neighboring slices for more precise and consistent segmentation. In addition, we construct a dataset which is mainly composed of non-solitary nodules. The proposed image enhancement method improves the effectiveness of network learning, while the dual-branch neural network explores multi-view information. The Dice coefficients of nodule segmentation on the LIDC dataset and our own dataset are 83.16% and 81.97% respectively, which significantly outperforms the existing works.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049379</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9555-4481</orcidid><orcidid>https://orcid.org/0000-0002-5773-8060</orcidid><orcidid>https://orcid.org/0000-0002-4591-0329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2478140008
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Background noise
Boundaries
Computed tomography
CT image
Datasets
Dual-branch network
Feature extraction
Image enhancement
Image segmentation
Learning
Lesions
Lung
Lung nodule segmentation
Lungs
Medical imaging
Neural networks
Nodules
Non-solitary nodule
Task analysis
title Coarse-to-Fine Lung Nodule Segmentation in CT Images with Image Enhancement and Dual-branch Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-to-Fine%20Lung%20Nodule%20Segmentation%20in%20CT%20Images%20with%20Image%20Enhancement%20and%20Dual-branch%20Network&rft.jtitle=IEEE%20access&rft.au=Wu,%20Zhitong&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049379&rft_dat=%3Cproquest_ieee_%3E2478140008%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478140008&rft_id=info:pmid/&rft_ieee_id=9314141&rft_doaj_id=oai_doaj_org_article_f97bfaa180ba425c96704ba477da093b&rfr_iscdi=true