Use AF-CNN for End-to-End Fiber Vibration Signal Recognition

Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal endpoint detection and feature extraction. These two aspects directly determine the success of OFVS recognition. The traditional method relies on artificially designed features and has a strong pertinence to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Ruan, Saisai, Mo, Jiaqing, Xu, Liang, Zhou, Gang, Liu, Yajun, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Ruan, Saisai
Mo, Jiaqing
Xu, Liang
Zhou, Gang
Liu, Yajun
Zhang, Xin
description Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal endpoint detection and feature extraction. These two aspects directly determine the success of OFVS recognition. The traditional method relies on artificially designed features and has a strong pertinence to the classification target, resulting in poor stability and flexibility. In response to the above problems, this paper combines the traditional OFVS recognition ideas (time-frequency analysis and feature extraction) and the characteristics of deep learning automatic learning parameters to construct an end-to-end adaptive filtering convolutional neural network (AF-CNN), which can directly get the classification results through the iterative update of the network. In modeling the original signal, the following steps were taken to make the network interpretable. First, we use a one-dimensional (1-D) convolution on the original OFVS. The convolution kernel can adaptively treat the original signal perform filtering to obtain filtered signals of different frequency bands. Second, using a general convolutional neural network (CNN) to extract the filtered signal features. Finally, a multi-layer perceptron (MLP) is used for classification. This paper compares the AF-CNN network with three traditional pattern recognition methods and proves that the AF-CNN network's accuracy is better than traditional pattern recognition methods. The average accuracy can reach 96.7%, and it can effectively distinguish OFVS with weaker energy and similar waveforms.
doi_str_mv 10.1109/ACCESS.2021.3049159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478139970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314145</ieee_id><doaj_id>oai_doaj_org_article_f6d1c8748d0e4f468b53954c47d42f68</doaj_id><sourcerecordid>2478139970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ca5059888b4b09d1ed46ad9763e57cb319b823222fbf41ab62531c79196cc21f3</originalsourceid><addsrcrecordid>eNpNUE1rAjEUXEoLFesv8LLQ89q8fG0CvciirSAWau01JNlEItbY7Hrov-_aFem7zGOYmcebLBsDmgAg-TStqtl6PcEIw4QgKoHJm2yAgcuCMMJv_-332ahpdqgb0VGsHGTPm8bl03lRrVa5jymfHeqijUUH-TwYl_LPYJJuQzzk67A96H3-7mzcHsKZesjuvN43bnTBYbaZzz6q12L59rKopsvCUiTawmqGmBRCGGqQrMHVlOtalpw4VlpDQBqBCcbYG09BG44ZAVtKkNxaDJ4Ms0WfW0e9U8cUvnT6UVEH9UfEtFU6tcHunfK8BitKKmrkqKdcGEYko5aWNcWeiy7rsc86pvh9ck2rdvGUuscahWkpgEhZok5FepVNsWmS89ergNS5ddW3rs6tq0vrnWvcu4Jz7uqQBChQRn4BqGh6DA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478139970</pqid></control><display><type>article</type><title>Use AF-CNN for End-to-End Fiber Vibration Signal Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ruan, Saisai ; Mo, Jiaqing ; Xu, Liang ; Zhou, Gang ; Liu, Yajun ; Zhang, Xin</creator><creatorcontrib>Ruan, Saisai ; Mo, Jiaqing ; Xu, Liang ; Zhou, Gang ; Liu, Yajun ; Zhang, Xin</creatorcontrib><description>Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal endpoint detection and feature extraction. These two aspects directly determine the success of OFVS recognition. The traditional method relies on artificially designed features and has a strong pertinence to the classification target, resulting in poor stability and flexibility. In response to the above problems, this paper combines the traditional OFVS recognition ideas (time-frequency analysis and feature extraction) and the characteristics of deep learning automatic learning parameters to construct an end-to-end adaptive filtering convolutional neural network (AF-CNN), which can directly get the classification results through the iterative update of the network. In modeling the original signal, the following steps were taken to make the network interpretable. First, we use a one-dimensional (1-D) convolution on the original OFVS. The convolution kernel can adaptively treat the original signal perform filtering to obtain filtered signals of different frequency bands. Second, using a general convolutional neural network (CNN) to extract the filtered signal features. Finally, a multi-layer perceptron (MLP) is used for classification. This paper compares the AF-CNN network with three traditional pattern recognition methods and proves that the AF-CNN network's accuracy is better than traditional pattern recognition methods. The average accuracy can reach 96.7%, and it can effectively distinguish OFVS with weaker energy and similar waveforms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049159</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>1-D convolution ; adaptive filtering ; Adaptive filters ; AF-CNN ; Artificial neural networks ; Audio frequencies ; Classification ; Convolution ; End to end ; Feature extraction ; Frequencies ; Iterative methods ; Kernel ; Machine learning ; MLP ; Multilayers ; Neural networks ; Optical communication ; Optical fibers ; Pattern recognition ; Signal resolution ; Time-frequency analysis ; Vibration ; Vibrations ; Waveforms</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ca5059888b4b09d1ed46ad9763e57cb319b823222fbf41ab62531c79196cc21f3</citedby><cites>FETCH-LOGICAL-c408t-ca5059888b4b09d1ed46ad9763e57cb319b823222fbf41ab62531c79196cc21f3</cites><orcidid>0000-0003-0059-426X ; 0000-0003-4444-9312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314145$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27624,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Ruan, Saisai</creatorcontrib><creatorcontrib>Mo, Jiaqing</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Liu, Yajun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Use AF-CNN for End-to-End Fiber Vibration Signal Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal endpoint detection and feature extraction. These two aspects directly determine the success of OFVS recognition. The traditional method relies on artificially designed features and has a strong pertinence to the classification target, resulting in poor stability and flexibility. In response to the above problems, this paper combines the traditional OFVS recognition ideas (time-frequency analysis and feature extraction) and the characteristics of deep learning automatic learning parameters to construct an end-to-end adaptive filtering convolutional neural network (AF-CNN), which can directly get the classification results through the iterative update of the network. In modeling the original signal, the following steps were taken to make the network interpretable. First, we use a one-dimensional (1-D) convolution on the original OFVS. The convolution kernel can adaptively treat the original signal perform filtering to obtain filtered signals of different frequency bands. Second, using a general convolutional neural network (CNN) to extract the filtered signal features. Finally, a multi-layer perceptron (MLP) is used for classification. This paper compares the AF-CNN network with three traditional pattern recognition methods and proves that the AF-CNN network's accuracy is better than traditional pattern recognition methods. The average accuracy can reach 96.7%, and it can effectively distinguish OFVS with weaker energy and similar waveforms.</description><subject>1-D convolution</subject><subject>adaptive filtering</subject><subject>Adaptive filters</subject><subject>AF-CNN</subject><subject>Artificial neural networks</subject><subject>Audio frequencies</subject><subject>Classification</subject><subject>Convolution</subject><subject>End to end</subject><subject>Feature extraction</subject><subject>Frequencies</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>MLP</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Pattern recognition</subject><subject>Signal resolution</subject><subject>Time-frequency analysis</subject><subject>Vibration</subject><subject>Vibrations</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rAjEUXEoLFesv8LLQ89q8fG0CvciirSAWau01JNlEItbY7Hrov-_aFem7zGOYmcebLBsDmgAg-TStqtl6PcEIw4QgKoHJm2yAgcuCMMJv_-332ahpdqgb0VGsHGTPm8bl03lRrVa5jymfHeqijUUH-TwYl_LPYJJuQzzk67A96H3-7mzcHsKZesjuvN43bnTBYbaZzz6q12L59rKopsvCUiTawmqGmBRCGGqQrMHVlOtalpw4VlpDQBqBCcbYG09BG44ZAVtKkNxaDJ4Ms0WfW0e9U8cUvnT6UVEH9UfEtFU6tcHunfK8BitKKmrkqKdcGEYko5aWNcWeiy7rsc86pvh9ck2rdvGUuscahWkpgEhZok5FepVNsWmS89ergNS5ddW3rs6tq0vrnWvcu4Jz7uqQBChQRn4BqGh6DA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ruan, Saisai</creator><creator>Mo, Jiaqing</creator><creator>Xu, Liang</creator><creator>Zhou, Gang</creator><creator>Liu, Yajun</creator><creator>Zhang, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0059-426X</orcidid><orcidid>https://orcid.org/0000-0003-4444-9312</orcidid></search><sort><creationdate>20210101</creationdate><title>Use AF-CNN for End-to-End Fiber Vibration Signal Recognition</title><author>Ruan, Saisai ; Mo, Jiaqing ; Xu, Liang ; Zhou, Gang ; Liu, Yajun ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ca5059888b4b09d1ed46ad9763e57cb319b823222fbf41ab62531c79196cc21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-D convolution</topic><topic>adaptive filtering</topic><topic>Adaptive filters</topic><topic>AF-CNN</topic><topic>Artificial neural networks</topic><topic>Audio frequencies</topic><topic>Classification</topic><topic>Convolution</topic><topic>End to end</topic><topic>Feature extraction</topic><topic>Frequencies</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>MLP</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Pattern recognition</topic><topic>Signal resolution</topic><topic>Time-frequency analysis</topic><topic>Vibration</topic><topic>Vibrations</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Saisai</creatorcontrib><creatorcontrib>Mo, Jiaqing</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><creatorcontrib>Liu, Yajun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Saisai</au><au>Mo, Jiaqing</au><au>Xu, Liang</au><au>Zhou, Gang</au><au>Liu, Yajun</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use AF-CNN for End-to-End Fiber Vibration Signal Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal endpoint detection and feature extraction. These two aspects directly determine the success of OFVS recognition. The traditional method relies on artificially designed features and has a strong pertinence to the classification target, resulting in poor stability and flexibility. In response to the above problems, this paper combines the traditional OFVS recognition ideas (time-frequency analysis and feature extraction) and the characteristics of deep learning automatic learning parameters to construct an end-to-end adaptive filtering convolutional neural network (AF-CNN), which can directly get the classification results through the iterative update of the network. In modeling the original signal, the following steps were taken to make the network interpretable. First, we use a one-dimensional (1-D) convolution on the original OFVS. The convolution kernel can adaptively treat the original signal perform filtering to obtain filtered signals of different frequency bands. Second, using a general convolutional neural network (CNN) to extract the filtered signal features. Finally, a multi-layer perceptron (MLP) is used for classification. This paper compares the AF-CNN network with three traditional pattern recognition methods and proves that the AF-CNN network's accuracy is better than traditional pattern recognition methods. The average accuracy can reach 96.7%, and it can effectively distinguish OFVS with weaker energy and similar waveforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049159</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0059-426X</orcidid><orcidid>https://orcid.org/0000-0003-4444-9312</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2478139970
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects 1-D convolution
adaptive filtering
Adaptive filters
AF-CNN
Artificial neural networks
Audio frequencies
Classification
Convolution
End to end
Feature extraction
Frequencies
Iterative methods
Kernel
Machine learning
MLP
Multilayers
Neural networks
Optical communication
Optical fibers
Pattern recognition
Signal resolution
Time-frequency analysis
Vibration
Vibrations
Waveforms
title Use AF-CNN for End-to-End Fiber Vibration Signal Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20AF-CNN%20for%20End-to-End%20Fiber%20Vibration%20Signal%20Recognition&rft.jtitle=IEEE%20access&rft.au=Ruan,%20Saisai&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049159&rft_dat=%3Cproquest_cross%3E2478139970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478139970&rft_id=info:pmid/&rft_ieee_id=9314145&rft_doaj_id=oai_doaj_org_article_f6d1c8748d0e4f468b53954c47d42f68&rfr_iscdi=true