Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks

•Advantages of the boundary element method and meshless approaches are inherited in the hybrid MDDM to deal with crack problems.•Cracked Reissner's plate with non homogenous media is investigated by MDDM first time.•High accurate/convergent solutions using Chebyshev polynomials can be obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2021-02, Vol.90, p.1226-1244
Hauptverfasser: Zheng, H., Sladek, J., Sladek, V., Wang, S.K., Wen, P.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue
container_start_page 1226
container_title Applied Mathematical Modelling
container_volume 90
creator Zheng, H.
Sladek, J.
Sladek, V.
Wang, S.K.
Wen, P.H.
description •Advantages of the boundary element method and meshless approaches are inherited in the hybrid MDDM to deal with crack problems.•Cracked Reissner's plate with non homogenous media is investigated by MDDM first time.•High accurate/convergent solutions using Chebyshev polynomials can be obtained by the hybrid method. Growing applications of non-homogenous media in engineering structures require the application of powerful computational tools. A novel hybrid Meshless Displacement Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials (FGMs) is presented in this paper. The fundamental solutions of slope and deflection discontinuity for an isotropic homogenous media are chosen as a part of general solutions to create the gaps between the crack surfaces. The governing equation is satisfied by using the meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The accuracy is verified by comparison of numerical and analytical results.
doi_str_mv 10.1016/j.apm.2020.10.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478113292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X20306144</els_id><sourcerecordid>2478113292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e25723386c945d70d228d9ffaba2c4b471542539639aa3b9a2e428cad5a185103</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAg6fd5mM_8STFtkJFEBVvIZvM0qzdD5O00n9vlnrw5GnmHd53ZngQuqYkpoRmsyaWQxszwkYdE8ZP0IRwkkclST5O__Tn6MK5hhCSBjVB76tDZY3GLbjNFpybaeOGrVTQQudxEKrvvOl2xh-Cx296jeve4sXyCb-Aca4De-twSHjA38ZvsLJSfbpLdFbLrYOr3zpFb4uH1_kqWj8vH-f360jxrPARsDRnnBeZKpNU50QzVuiyrmUlmUqqJKdpwlJeZryUklelZJCwQkmdSlqklPApujnuHWz_tQPnRdPvbBdOCpbkBaWclSy46NGlbO-chVoM1rTSHgQlYsQnGhHwiRHfOAr4QubumIHw_t6AFU4Z6BRoY0F5oXvzT_oHqUF34w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478113292</pqid></control><display><type>article</type><title>Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks</title><source>Elsevier ScienceDirect Journals Complete</source><source>Business Source Complete</source><source>EBSCOhost Education Source</source><creator>Zheng, H. ; Sladek, J. ; Sladek, V. ; Wang, S.K. ; Wen, P.H.</creator><creatorcontrib>Zheng, H. ; Sladek, J. ; Sladek, V. ; Wang, S.K. ; Wen, P.H.</creatorcontrib><description>•Advantages of the boundary element method and meshless approaches are inherited in the hybrid MDDM to deal with crack problems.•Cracked Reissner's plate with non homogenous media is investigated by MDDM first time.•High accurate/convergent solutions using Chebyshev polynomials can be obtained by the hybrid method. Growing applications of non-homogenous media in engineering structures require the application of powerful computational tools. A novel hybrid Meshless Displacement Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials (FGMs) is presented in this paper. The fundamental solutions of slope and deflection discontinuity for an isotropic homogenous media are chosen as a part of general solutions to create the gaps between the crack surfaces. The governing equation is satisfied by using the meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The accuracy is verified by comparison of numerical and analytical results.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2020.10.023</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Boundary element method ; Chebyshev approximation ; Collocation methods ; Cracks ; Discontinuity ; Displacement discontinuity method ; Finite element method ; Functionally graded materials ; Functionally gradient materials ; Interpolation ; Kirchhoff and Reissner plate theories ; Meshless local Petrov-Galerkin method ; Meshless methods ; Polynomials ; Software ; Stress intensity factors</subject><ispartof>Applied Mathematical Modelling, 2021-02, Vol.90, p.1226-1244</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e25723386c945d70d228d9ffaba2c4b471542539639aa3b9a2e428cad5a185103</citedby><cites>FETCH-LOGICAL-c368t-e25723386c945d70d228d9ffaba2c4b471542539639aa3b9a2e428cad5a185103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2020.10.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zheng, H.</creatorcontrib><creatorcontrib>Sladek, J.</creatorcontrib><creatorcontrib>Sladek, V.</creatorcontrib><creatorcontrib>Wang, S.K.</creatorcontrib><creatorcontrib>Wen, P.H.</creatorcontrib><title>Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks</title><title>Applied Mathematical Modelling</title><description>•Advantages of the boundary element method and meshless approaches are inherited in the hybrid MDDM to deal with crack problems.•Cracked Reissner's plate with non homogenous media is investigated by MDDM first time.•High accurate/convergent solutions using Chebyshev polynomials can be obtained by the hybrid method. Growing applications of non-homogenous media in engineering structures require the application of powerful computational tools. A novel hybrid Meshless Displacement Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials (FGMs) is presented in this paper. The fundamental solutions of slope and deflection discontinuity for an isotropic homogenous media are chosen as a part of general solutions to create the gaps between the crack surfaces. The governing equation is satisfied by using the meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The accuracy is verified by comparison of numerical and analytical results.</description><subject>Boundary element method</subject><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Cracks</subject><subject>Discontinuity</subject><subject>Displacement discontinuity method</subject><subject>Finite element method</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Interpolation</subject><subject>Kirchhoff and Reissner plate theories</subject><subject>Meshless local Petrov-Galerkin method</subject><subject>Meshless methods</subject><subject>Polynomials</subject><subject>Software</subject><subject>Stress intensity factors</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAg6fd5mM_8STFtkJFEBVvIZvM0qzdD5O00n9vlnrw5GnmHd53ZngQuqYkpoRmsyaWQxszwkYdE8ZP0IRwkkclST5O__Tn6MK5hhCSBjVB76tDZY3GLbjNFpybaeOGrVTQQudxEKrvvOl2xh-Cx296jeve4sXyCb-Aca4De-twSHjA38ZvsLJSfbpLdFbLrYOr3zpFb4uH1_kqWj8vH-f360jxrPARsDRnnBeZKpNU50QzVuiyrmUlmUqqJKdpwlJeZryUklelZJCwQkmdSlqklPApujnuHWz_tQPnRdPvbBdOCpbkBaWclSy46NGlbO-chVoM1rTSHgQlYsQnGhHwiRHfOAr4QubumIHw_t6AFU4Z6BRoY0F5oXvzT_oHqUF34w</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Zheng, H.</creator><creator>Sladek, J.</creator><creator>Sladek, V.</creator><creator>Wang, S.K.</creator><creator>Wen, P.H.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202102</creationdate><title>Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks</title><author>Zheng, H. ; Sladek, J. ; Sladek, V. ; Wang, S.K. ; Wen, P.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e25723386c945d70d228d9ffaba2c4b471542539639aa3b9a2e428cad5a185103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary element method</topic><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Cracks</topic><topic>Discontinuity</topic><topic>Displacement discontinuity method</topic><topic>Finite element method</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Interpolation</topic><topic>Kirchhoff and Reissner plate theories</topic><topic>Meshless local Petrov-Galerkin method</topic><topic>Meshless methods</topic><topic>Polynomials</topic><topic>Software</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, H.</creatorcontrib><creatorcontrib>Sladek, J.</creatorcontrib><creatorcontrib>Sladek, V.</creatorcontrib><creatorcontrib>Wang, S.K.</creatorcontrib><creatorcontrib>Wen, P.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, H.</au><au>Sladek, J.</au><au>Sladek, V.</au><au>Wang, S.K.</au><au>Wen, P.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-02</date><risdate>2021</risdate><volume>90</volume><spage>1226</spage><epage>1244</epage><pages>1226-1244</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Advantages of the boundary element method and meshless approaches are inherited in the hybrid MDDM to deal with crack problems.•Cracked Reissner's plate with non homogenous media is investigated by MDDM first time.•High accurate/convergent solutions using Chebyshev polynomials can be obtained by the hybrid method. Growing applications of non-homogenous media in engineering structures require the application of powerful computational tools. A novel hybrid Meshless Displacement Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials (FGMs) is presented in this paper. The fundamental solutions of slope and deflection discontinuity for an isotropic homogenous media are chosen as a part of general solutions to create the gaps between the crack surfaces. The governing equation is satisfied by using the meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The accuracy is verified by comparison of numerical and analytical results.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2020.10.023</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2021-02, Vol.90, p.1226-1244
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2478113292
source Elsevier ScienceDirect Journals Complete; Business Source Complete; EBSCOhost Education Source
subjects Boundary element method
Chebyshev approximation
Collocation methods
Cracks
Discontinuity
Displacement discontinuity method
Finite element method
Functionally graded materials
Functionally gradient materials
Interpolation
Kirchhoff and Reissner plate theories
Meshless local Petrov-Galerkin method
Meshless methods
Polynomials
Software
Stress intensity factors
title Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20meshless/displacement%20discontinuity%20method%20for%20FGM%20Reissner's%20plate%20with%20cracks&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Zheng,%20H.&rft.date=2021-02&rft.volume=90&rft.spage=1226&rft.epage=1244&rft.pages=1226-1244&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2020.10.023&rft_dat=%3Cproquest_cross%3E2478113292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478113292&rft_id=info:pmid/&rft_els_id=S0307904X20306144&rfr_iscdi=true