Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau

This paper investigates the soil moisture retrievals over Tibetan Plateau using multi-temporal ALOS2-PALSAR2 data acquired in ScanSAR mode, in contrary to the commonly used StripMap SAR imaging mode. Considering the dual-polarimetry with limited observables, the surface roughness parameters such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2020-12, Vol.251, p.112100, Article 112100
Hauptverfasser: Wang, Hongquan, Magagi, Ramata, Goïta, Kalifa, Wang, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112100
container_title Remote sensing of environment
container_volume 251
creator Wang, Hongquan
Magagi, Ramata
Goïta, Kalifa
Wang, Ke
description This paper investigates the soil moisture retrievals over Tibetan Plateau using multi-temporal ALOS2-PALSAR2 data acquired in ScanSAR mode, in contrary to the commonly used StripMap SAR imaging mode. Considering the dual-polarimetry with limited observables, the surface roughness parameters such as the RMS height and auto-correlation length are first estimated by optimizing the semi-empirical Oh2004 model applied to the ALOS2 data acquired under bare soil condition. The vegetation water content corresponding to each ALOS2 acquisition time is derived from an empirical model applied to the temporally interpolated MODIS NDVI data. Then, the obtained roughness and vegetation optical depth are substituted into the Water Cloud Model which we modified by adding a double-bounce component according to the L-band scattering processes to retrieve the effective scattering albedo and soil moisture. The results show that the optimized surface RMS height and the associated slope are negatively related to a dual-angular radar index ΔHH, indicating the feasibility to optimize the relatively stable surface roughness parameters before retrieving the soil moisture dynamics. The obtained vegetation optical depth which is cross-validated against a normalized cross-polarized radar descriptor indicates a significant increase from May to August, in response to the vegetation phenological growth. Furthermore, the time-variable scattering albedo is less than 0.08, and slightly increases with the vegetation development. By accounting for the double-bounce component, the retrieved soil moisture better agrees with the ground measurements with R = 0.89 and RMSE = 0.058 m3/m3, but exhibits an overestimation issue for the soil moisture higher than 0.35 m3/m3 due to the saturation of SAR signal and the relatively strong vegetation cover. A positive correspondence (R = 0.81) between the retrieved soil moisture and the interpolated NDVI was found, verifying their close coupling in the soil-vegetation system. This study deepens the insights in the potential integration between the optical and L-band microwave observations to retrieve soil moisture over vegetated area. •ALOS2 data acquired at ScanSAR mode are investigated to retrieve soil moisture.•Microwave and optical data are coupled in the retrieval process.•Water Cloud Model is calibrated by adding a double-bounce scattering component.•Three-component is better than two-component decomposition for soil moisture retrieval.
doi_str_mv 10.1016/j.rse.2020.112100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478113137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425720304739</els_id><sourcerecordid>2478113137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f76d921ae6834791e1a1042e542fe5931d4e18f22b716831cab0c0e0e2a4c0ab3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLcFz6kzm003wVOpX4VKxdTzstlMyoY2qbtJof_elHr2NAy8zzvDw9g9wgQBp4_1xAeaCBDDjgIBLtgIU5VFoEBeshFALCMpEnXNbkKoATBJFY5Ynrduy3etC13viXvqvKOD2QbeB9ds-Gy5ykWUW9Pksy9umpJ_rJ4XOQ_HhvzmyNsDeb52BXWm4Z9b05Hpb9lVNTTQ3d8cs-_Xl_X8PVqu3hbz2TKysUi6qFLTMhNoaJrGUmVIaBCkoESKipIsxlISppUQhcIhgtYUYIGAhJEWTBGP2cO5d-_bn55Cp-u2981wUgupUsQYYzWk8Jyyvg3BU6X33u2MP2oEfXKnaz240yd3-uxuYJ7ODA3vHxx5HayjxlLpPNlOl637h_4F8d508Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478113137</pqid></control><display><type>article</type><title>Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Wang, Ke</creator><creatorcontrib>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Wang, Ke</creatorcontrib><description>This paper investigates the soil moisture retrievals over Tibetan Plateau using multi-temporal ALOS2-PALSAR2 data acquired in ScanSAR mode, in contrary to the commonly used StripMap SAR imaging mode. Considering the dual-polarimetry with limited observables, the surface roughness parameters such as the RMS height and auto-correlation length are first estimated by optimizing the semi-empirical Oh2004 model applied to the ALOS2 data acquired under bare soil condition. The vegetation water content corresponding to each ALOS2 acquisition time is derived from an empirical model applied to the temporally interpolated MODIS NDVI data. Then, the obtained roughness and vegetation optical depth are substituted into the Water Cloud Model which we modified by adding a double-bounce component according to the L-band scattering processes to retrieve the effective scattering albedo and soil moisture. The results show that the optimized surface RMS height and the associated slope are negatively related to a dual-angular radar index ΔHH, indicating the feasibility to optimize the relatively stable surface roughness parameters before retrieving the soil moisture dynamics. The obtained vegetation optical depth which is cross-validated against a normalized cross-polarized radar descriptor indicates a significant increase from May to August, in response to the vegetation phenological growth. Furthermore, the time-variable scattering albedo is less than 0.08, and slightly increases with the vegetation development. By accounting for the double-bounce component, the retrieved soil moisture better agrees with the ground measurements with R = 0.89 and RMSE = 0.058 m3/m3, but exhibits an overestimation issue for the soil moisture higher than 0.35 m3/m3 due to the saturation of SAR signal and the relatively strong vegetation cover. A positive correspondence (R = 0.81) between the retrieved soil moisture and the interpolated NDVI was found, verifying their close coupling in the soil-vegetation system. This study deepens the insights in the potential integration between the optical and L-band microwave observations to retrieve soil moisture over vegetated area. •ALOS2 data acquired at ScanSAR mode are investigated to retrieve soil moisture.•Microwave and optical data are coupled in the retrieval process.•Water Cloud Model is calibrated by adding a double-bounce scattering component.•Three-component is better than two-component decomposition for soil moisture retrieval.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2020.112100</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Albedo ; ALOS2-PALSAR2 ; Data acquisition ; Empirical models ; Mathematical models ; MODIS ; Moisture content ; Optical analysis ; Optical thickness ; Optimization ; Parameters ; Radar ; Radar polarimetry ; Radiative transfer model ; Roughness parameters ; ScanSAR mode ; Scattering ; Soil conditions ; Soil dynamics ; Soil investigations ; Soil moisture ; Soil water ; Surface roughness ; Tibetan plateau ; Vegetation ; Vegetation cover ; Water content ; Water depth</subject><ispartof>Remote sensing of environment, 2020-12, Vol.251, p.112100, Article 112100</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier BV Dec 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f76d921ae6834791e1a1042e542fe5931d4e18f22b716831cab0c0e0e2a4c0ab3</citedby><cites>FETCH-LOGICAL-c325t-f76d921ae6834791e1a1042e542fe5931d4e18f22b716831cab0c0e0e2a4c0ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425720304739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Hongquan</creatorcontrib><creatorcontrib>Magagi, Ramata</creatorcontrib><creatorcontrib>Goïta, Kalifa</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><title>Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau</title><title>Remote sensing of environment</title><description>This paper investigates the soil moisture retrievals over Tibetan Plateau using multi-temporal ALOS2-PALSAR2 data acquired in ScanSAR mode, in contrary to the commonly used StripMap SAR imaging mode. Considering the dual-polarimetry with limited observables, the surface roughness parameters such as the RMS height and auto-correlation length are first estimated by optimizing the semi-empirical Oh2004 model applied to the ALOS2 data acquired under bare soil condition. The vegetation water content corresponding to each ALOS2 acquisition time is derived from an empirical model applied to the temporally interpolated MODIS NDVI data. Then, the obtained roughness and vegetation optical depth are substituted into the Water Cloud Model which we modified by adding a double-bounce component according to the L-band scattering processes to retrieve the effective scattering albedo and soil moisture. The results show that the optimized surface RMS height and the associated slope are negatively related to a dual-angular radar index ΔHH, indicating the feasibility to optimize the relatively stable surface roughness parameters before retrieving the soil moisture dynamics. The obtained vegetation optical depth which is cross-validated against a normalized cross-polarized radar descriptor indicates a significant increase from May to August, in response to the vegetation phenological growth. Furthermore, the time-variable scattering albedo is less than 0.08, and slightly increases with the vegetation development. By accounting for the double-bounce component, the retrieved soil moisture better agrees with the ground measurements with R = 0.89 and RMSE = 0.058 m3/m3, but exhibits an overestimation issue for the soil moisture higher than 0.35 m3/m3 due to the saturation of SAR signal and the relatively strong vegetation cover. A positive correspondence (R = 0.81) between the retrieved soil moisture and the interpolated NDVI was found, verifying their close coupling in the soil-vegetation system. This study deepens the insights in the potential integration between the optical and L-band microwave observations to retrieve soil moisture over vegetated area. •ALOS2 data acquired at ScanSAR mode are investigated to retrieve soil moisture.•Microwave and optical data are coupled in the retrieval process.•Water Cloud Model is calibrated by adding a double-bounce scattering component.•Three-component is better than two-component decomposition for soil moisture retrieval.</description><subject>Albedo</subject><subject>ALOS2-PALSAR2</subject><subject>Data acquisition</subject><subject>Empirical models</subject><subject>Mathematical models</subject><subject>MODIS</subject><subject>Moisture content</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>Radiative transfer model</subject><subject>Roughness parameters</subject><subject>ScanSAR mode</subject><subject>Scattering</subject><subject>Soil conditions</subject><subject>Soil dynamics</subject><subject>Soil investigations</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Surface roughness</subject><subject>Tibetan plateau</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>Water content</subject><subject>Water depth</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLcFz6kzm003wVOpX4VKxdTzstlMyoY2qbtJof_elHr2NAy8zzvDw9g9wgQBp4_1xAeaCBDDjgIBLtgIU5VFoEBeshFALCMpEnXNbkKoATBJFY5Ynrduy3etC13viXvqvKOD2QbeB9ds-Gy5ykWUW9Pksy9umpJ_rJ4XOQ_HhvzmyNsDeb52BXWm4Z9b05Hpb9lVNTTQ3d8cs-_Xl_X8PVqu3hbz2TKysUi6qFLTMhNoaJrGUmVIaBCkoESKipIsxlISppUQhcIhgtYUYIGAhJEWTBGP2cO5d-_bn55Cp-u2981wUgupUsQYYzWk8Jyyvg3BU6X33u2MP2oEfXKnaz240yd3-uxuYJ7ODA3vHxx5HayjxlLpPNlOl637h_4F8d508Q</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>Wang, Hongquan</creator><creator>Magagi, Ramata</creator><creator>Goïta, Kalifa</creator><creator>Wang, Ke</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20201215</creationdate><title>Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau</title><author>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Wang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f76d921ae6834791e1a1042e542fe5931d4e18f22b716831cab0c0e0e2a4c0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>ALOS2-PALSAR2</topic><topic>Data acquisition</topic><topic>Empirical models</topic><topic>Mathematical models</topic><topic>MODIS</topic><topic>Moisture content</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>Radiative transfer model</topic><topic>Roughness parameters</topic><topic>ScanSAR mode</topic><topic>Scattering</topic><topic>Soil conditions</topic><topic>Soil dynamics</topic><topic>Soil investigations</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Surface roughness</topic><topic>Tibetan plateau</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>Water content</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongquan</creatorcontrib><creatorcontrib>Magagi, Ramata</creatorcontrib><creatorcontrib>Goïta, Kalifa</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongquan</au><au>Magagi, Ramata</au><au>Goïta, Kalifa</au><au>Wang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau</atitle><jtitle>Remote sensing of environment</jtitle><date>2020-12-15</date><risdate>2020</risdate><volume>251</volume><spage>112100</spage><pages>112100-</pages><artnum>112100</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>This paper investigates the soil moisture retrievals over Tibetan Plateau using multi-temporal ALOS2-PALSAR2 data acquired in ScanSAR mode, in contrary to the commonly used StripMap SAR imaging mode. Considering the dual-polarimetry with limited observables, the surface roughness parameters such as the RMS height and auto-correlation length are first estimated by optimizing the semi-empirical Oh2004 model applied to the ALOS2 data acquired under bare soil condition. The vegetation water content corresponding to each ALOS2 acquisition time is derived from an empirical model applied to the temporally interpolated MODIS NDVI data. Then, the obtained roughness and vegetation optical depth are substituted into the Water Cloud Model which we modified by adding a double-bounce component according to the L-band scattering processes to retrieve the effective scattering albedo and soil moisture. The results show that the optimized surface RMS height and the associated slope are negatively related to a dual-angular radar index ΔHH, indicating the feasibility to optimize the relatively stable surface roughness parameters before retrieving the soil moisture dynamics. The obtained vegetation optical depth which is cross-validated against a normalized cross-polarized radar descriptor indicates a significant increase from May to August, in response to the vegetation phenological growth. Furthermore, the time-variable scattering albedo is less than 0.08, and slightly increases with the vegetation development. By accounting for the double-bounce component, the retrieved soil moisture better agrees with the ground measurements with R = 0.89 and RMSE = 0.058 m3/m3, but exhibits an overestimation issue for the soil moisture higher than 0.35 m3/m3 due to the saturation of SAR signal and the relatively strong vegetation cover. A positive correspondence (R = 0.81) between the retrieved soil moisture and the interpolated NDVI was found, verifying their close coupling in the soil-vegetation system. This study deepens the insights in the potential integration between the optical and L-band microwave observations to retrieve soil moisture over vegetated area. •ALOS2 data acquired at ScanSAR mode are investigated to retrieve soil moisture.•Microwave and optical data are coupled in the retrieval process.•Water Cloud Model is calibrated by adding a double-bounce scattering component.•Three-component is better than two-component decomposition for soil moisture retrieval.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2020.112100</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2020-12, Vol.251, p.112100, Article 112100
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2478113137
source Elsevier ScienceDirect Journals
subjects Albedo
ALOS2-PALSAR2
Data acquisition
Empirical models
Mathematical models
MODIS
Moisture content
Optical analysis
Optical thickness
Optimization
Parameters
Radar
Radar polarimetry
Radiative transfer model
Roughness parameters
ScanSAR mode
Scattering
Soil conditions
Soil dynamics
Soil investigations
Soil moisture
Soil water
Surface roughness
Tibetan plateau
Vegetation
Vegetation cover
Water content
Water depth
title Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20moisture%20retrievals%20using%20ALOS2-ScanSAR%20and%20MODIS%20synergy%20over%20Tibetan%20Plateau&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Wang,%20Hongquan&rft.date=2020-12-15&rft.volume=251&rft.spage=112100&rft.pages=112100-&rft.artnum=112100&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2020.112100&rft_dat=%3Cproquest_cross%3E2478113137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478113137&rft_id=info:pmid/&rft_els_id=S0034425720304739&rfr_iscdi=true