Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites
To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Charact...
Gespeichert in:
Veröffentlicht in: | Dental materials 2020-12, Vol.36 (12), p.1544-1556 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1556 |
---|---|
container_issue | 12 |
container_start_page | 1544 |
container_title | Dental materials |
container_volume | 36 |
creator | Guimarães, Genine Moreira de Freitas Bronze-Uhle, Erika Soares Lisboa-Filho, Paulo Noronha Fugolin, Ana Paula Piovezan Borges, Ana Flavia Sanches Gonzaga, Carla Castiglia Pfeifer, Carmem Silvia Furuse, Adilson Yoshio |
description | To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite.
TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05).
TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles.
The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening.
The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material. |
doi_str_mv | 10.1016/j.dental.2020.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478111402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564120302530</els_id><sourcerecordid>2478111402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gYeA510nu9vs5iJIqR9Q6KWeQ5pMMKXdrEkq1V9vtvXsaeYd5h3eeQi5Y1AyYPxhUxrsk9qWFVRQgiiB1WdkwrpWFACiPScTYCCKKW_YJbmKcQMATSXYhBzm1qJO1FuaPpAqY1xyvh-13fd67NXW_aChK7esaK96n_ZrjFT15qgGFZLT2zzJriH4AbMelaV4yMLtjtFowOh6qv1u8NEljDfkwqptxNu_ek3en-er2WuxWL68zZ4WhW7qOhXWciEEQMW5qDk3DMCK2nQdgmmn2vBOt7arBdZrbXW3VswYrqdVq3WGIdr6mtyf7uZsn3uMSW78PuSnoqyatmOMNVDlrea0pYOPMaCVQ06uwrdkIEfGciNPjOXIWIKQmXG2PZ5smD_4chhk1A57jcaFTFUa7_4_8Avb9okD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478111402</pqid></control><display><type>article</type><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><source>Elsevier ScienceDirect Journals</source><creator>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</creator><creatorcontrib>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</creatorcontrib><description>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite.
TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05).
TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles.
The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening.
The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2020.09.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aluminum ; Aluminum silicates ; Barium ; Bisphenol A glycidyl methacrylate ; Composite materials ; Ethanol ; Evaluation ; Functionalization ; Methacrylates ; Microhardness ; Nanoparticles ; Nanostructure ; Nanostructures ; Nanotechnology ; Nanotubes ; Polymer matrix composites ; Polymer structure ; Properties (attributes) ; Resins ; Softening ; Titanium dioxide ; Triethylene glycol dimethacrylate ; Variance analysis</subject><ispartof>Dental materials, 2020-12, Vol.36 (12), p.1544-1556</ispartof><rights>2020 The Academy of Dental Materials</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</citedby><cites>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</cites><orcidid>0000-0002-3107-5430 ; 0000-0002-6636-8022 ; 0000-0003-4705-6354 ; 0000-0002-4415-850X ; 0000-0002-7734-4069 ; 0000-0002-1587-3838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0109564120302530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guimarães, Genine Moreira de Freitas</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><creatorcontrib>Fugolin, Ana Paula Piovezan</creatorcontrib><creatorcontrib>Borges, Ana Flavia Sanches</creatorcontrib><creatorcontrib>Gonzaga, Carla Castiglia</creatorcontrib><creatorcontrib>Pfeifer, Carmem Silvia</creatorcontrib><creatorcontrib>Furuse, Adilson Yoshio</creatorcontrib><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><title>Dental materials</title><description>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite.
TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05).
TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles.
The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening.
The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</description><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Barium</subject><subject>Bisphenol A glycidyl methacrylate</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Evaluation</subject><subject>Functionalization</subject><subject>Methacrylates</subject><subject>Microhardness</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Polymer matrix composites</subject><subject>Polymer structure</subject><subject>Properties (attributes)</subject><subject>Resins</subject><subject>Softening</subject><subject>Titanium dioxide</subject><subject>Triethylene glycol dimethacrylate</subject><subject>Variance analysis</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gYeA510nu9vs5iJIqR9Q6KWeQ5pMMKXdrEkq1V9vtvXsaeYd5h3eeQi5Y1AyYPxhUxrsk9qWFVRQgiiB1WdkwrpWFACiPScTYCCKKW_YJbmKcQMATSXYhBzm1qJO1FuaPpAqY1xyvh-13fd67NXW_aChK7esaK96n_ZrjFT15qgGFZLT2zzJriH4AbMelaV4yMLtjtFowOh6qv1u8NEljDfkwqptxNu_ek3en-er2WuxWL68zZ4WhW7qOhXWciEEQMW5qDk3DMCK2nQdgmmn2vBOt7arBdZrbXW3VswYrqdVq3WGIdr6mtyf7uZsn3uMSW78PuSnoqyatmOMNVDlrea0pYOPMaCVQ06uwrdkIEfGciNPjOXIWIKQmXG2PZ5smD_4chhk1A57jcaFTFUa7_4_8Avb9okD</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Guimarães, Genine Moreira de Freitas</creator><creator>Bronze-Uhle, Erika Soares</creator><creator>Lisboa-Filho, Paulo Noronha</creator><creator>Fugolin, Ana Paula Piovezan</creator><creator>Borges, Ana Flavia Sanches</creator><creator>Gonzaga, Carla Castiglia</creator><creator>Pfeifer, Carmem Silvia</creator><creator>Furuse, Adilson Yoshio</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3107-5430</orcidid><orcidid>https://orcid.org/0000-0002-6636-8022</orcidid><orcidid>https://orcid.org/0000-0003-4705-6354</orcidid><orcidid>https://orcid.org/0000-0002-4415-850X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4069</orcidid><orcidid>https://orcid.org/0000-0002-1587-3838</orcidid></search><sort><creationdate>202012</creationdate><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><author>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Barium</topic><topic>Bisphenol A glycidyl methacrylate</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Evaluation</topic><topic>Functionalization</topic><topic>Methacrylates</topic><topic>Microhardness</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Polymer matrix composites</topic><topic>Polymer structure</topic><topic>Properties (attributes)</topic><topic>Resins</topic><topic>Softening</topic><topic>Titanium dioxide</topic><topic>Triethylene glycol dimethacrylate</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Genine Moreira de Freitas</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><creatorcontrib>Fugolin, Ana Paula Piovezan</creatorcontrib><creatorcontrib>Borges, Ana Flavia Sanches</creatorcontrib><creatorcontrib>Gonzaga, Carla Castiglia</creatorcontrib><creatorcontrib>Pfeifer, Carmem Silvia</creatorcontrib><creatorcontrib>Furuse, Adilson Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Genine Moreira de Freitas</au><au>Bronze-Uhle, Erika Soares</au><au>Lisboa-Filho, Paulo Noronha</au><au>Fugolin, Ana Paula Piovezan</au><au>Borges, Ana Flavia Sanches</au><au>Gonzaga, Carla Castiglia</au><au>Pfeifer, Carmem Silvia</au><au>Furuse, Adilson Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</atitle><jtitle>Dental materials</jtitle><date>2020-12</date><risdate>2020</risdate><volume>36</volume><issue>12</issue><spage>1544</spage><epage>1556</epage><pages>1544-1556</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite.
TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05).
TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles.
The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening.
The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.dental.2020.09.013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3107-5430</orcidid><orcidid>https://orcid.org/0000-0002-6636-8022</orcidid><orcidid>https://orcid.org/0000-0003-4705-6354</orcidid><orcidid>https://orcid.org/0000-0002-4415-850X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4069</orcidid><orcidid>https://orcid.org/0000-0002-1587-3838</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0109-5641 |
ispartof | Dental materials, 2020-12, Vol.36 (12), p.1544-1556 |
issn | 0109-5641 1879-0097 |
language | eng |
recordid | cdi_proquest_journals_2478111402 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Aluminum silicates Barium Bisphenol A glycidyl methacrylate Composite materials Ethanol Evaluation Functionalization Methacrylates Microhardness Nanoparticles Nanostructure Nanostructures Nanotechnology Nanotubes Polymer matrix composites Polymer structure Properties (attributes) Resins Softening Titanium dioxide Triethylene glycol dimethacrylate Variance analysis |
title | Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20addition%20of%20functionalized%20TiO2%20nanotubes%20and%20nanoparticles%20on%20properties%20of%20experimental%20resin%20composites&rft.jtitle=Dental%20materials&rft.au=Guimar%C3%A3es,%20Genine%20Moreira%20de%20Freitas&rft.date=2020-12&rft.volume=36&rft.issue=12&rft.spage=1544&rft.epage=1556&rft.pages=1544-1556&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2020.09.013&rft_dat=%3Cproquest_cross%3E2478111402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478111402&rft_id=info:pmid/&rft_els_id=S0109564120302530&rfr_iscdi=true |