Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites

To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2020-12, Vol.36 (12), p.1544-1556
Hauptverfasser: Guimarães, Genine Moreira de Freitas, Bronze-Uhle, Erika Soares, Lisboa-Filho, Paulo Noronha, Fugolin, Ana Paula Piovezan, Borges, Ana Flavia Sanches, Gonzaga, Carla Castiglia, Pfeifer, Carmem Silvia, Furuse, Adilson Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1556
container_issue 12
container_start_page 1544
container_title Dental materials
container_volume 36
creator Guimarães, Genine Moreira de Freitas
Bronze-Uhle, Erika Soares
Lisboa-Filho, Paulo Noronha
Fugolin, Ana Paula Piovezan
Borges, Ana Flavia Sanches
Gonzaga, Carla Castiglia
Pfeifer, Carmem Silvia
Furuse, Adilson Yoshio
description To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05). TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles. The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening. The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.
doi_str_mv 10.1016/j.dental.2020.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478111402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564120302530</els_id><sourcerecordid>2478111402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gYeA510nu9vs5iJIqR9Q6KWeQ5pMMKXdrEkq1V9vtvXsaeYd5h3eeQi5Y1AyYPxhUxrsk9qWFVRQgiiB1WdkwrpWFACiPScTYCCKKW_YJbmKcQMATSXYhBzm1qJO1FuaPpAqY1xyvh-13fd67NXW_aChK7esaK96n_ZrjFT15qgGFZLT2zzJriH4AbMelaV4yMLtjtFowOh6qv1u8NEljDfkwqptxNu_ek3en-er2WuxWL68zZ4WhW7qOhXWciEEQMW5qDk3DMCK2nQdgmmn2vBOt7arBdZrbXW3VswYrqdVq3WGIdr6mtyf7uZsn3uMSW78PuSnoqyatmOMNVDlrea0pYOPMaCVQ06uwrdkIEfGciNPjOXIWIKQmXG2PZ5smD_4chhk1A57jcaFTFUa7_4_8Avb9okD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478111402</pqid></control><display><type>article</type><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><source>Elsevier ScienceDirect Journals</source><creator>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</creator><creatorcontrib>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</creatorcontrib><description>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05). TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p &lt; 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p &lt; 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p &lt; 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles. The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening. The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2020.09.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aluminum ; Aluminum silicates ; Barium ; Bisphenol A glycidyl methacrylate ; Composite materials ; Ethanol ; Evaluation ; Functionalization ; Methacrylates ; Microhardness ; Nanoparticles ; Nanostructure ; Nanostructures ; Nanotechnology ; Nanotubes ; Polymer matrix composites ; Polymer structure ; Properties (attributes) ; Resins ; Softening ; Titanium dioxide ; Triethylene glycol dimethacrylate ; Variance analysis</subject><ispartof>Dental materials, 2020-12, Vol.36 (12), p.1544-1556</ispartof><rights>2020 The Academy of Dental Materials</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</citedby><cites>FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</cites><orcidid>0000-0002-3107-5430 ; 0000-0002-6636-8022 ; 0000-0003-4705-6354 ; 0000-0002-4415-850X ; 0000-0002-7734-4069 ; 0000-0002-1587-3838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0109564120302530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guimarães, Genine Moreira de Freitas</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><creatorcontrib>Fugolin, Ana Paula Piovezan</creatorcontrib><creatorcontrib>Borges, Ana Flavia Sanches</creatorcontrib><creatorcontrib>Gonzaga, Carla Castiglia</creatorcontrib><creatorcontrib>Pfeifer, Carmem Silvia</creatorcontrib><creatorcontrib>Furuse, Adilson Yoshio</creatorcontrib><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><title>Dental materials</title><description>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05). TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p &lt; 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p &lt; 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p &lt; 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles. The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening. The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</description><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Barium</subject><subject>Bisphenol A glycidyl methacrylate</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Evaluation</subject><subject>Functionalization</subject><subject>Methacrylates</subject><subject>Microhardness</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Polymer matrix composites</subject><subject>Polymer structure</subject><subject>Properties (attributes)</subject><subject>Resins</subject><subject>Softening</subject><subject>Titanium dioxide</subject><subject>Triethylene glycol dimethacrylate</subject><subject>Variance analysis</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gYeA510nu9vs5iJIqR9Q6KWeQ5pMMKXdrEkq1V9vtvXsaeYd5h3eeQi5Y1AyYPxhUxrsk9qWFVRQgiiB1WdkwrpWFACiPScTYCCKKW_YJbmKcQMATSXYhBzm1qJO1FuaPpAqY1xyvh-13fd67NXW_aChK7esaK96n_ZrjFT15qgGFZLT2zzJriH4AbMelaV4yMLtjtFowOh6qv1u8NEljDfkwqptxNu_ek3en-er2WuxWL68zZ4WhW7qOhXWciEEQMW5qDk3DMCK2nQdgmmn2vBOt7arBdZrbXW3VswYrqdVq3WGIdr6mtyf7uZsn3uMSW78PuSnoqyatmOMNVDlrea0pYOPMaCVQ06uwrdkIEfGciNPjOXIWIKQmXG2PZ5smD_4chhk1A57jcaFTFUa7_4_8Avb9okD</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Guimarães, Genine Moreira de Freitas</creator><creator>Bronze-Uhle, Erika Soares</creator><creator>Lisboa-Filho, Paulo Noronha</creator><creator>Fugolin, Ana Paula Piovezan</creator><creator>Borges, Ana Flavia Sanches</creator><creator>Gonzaga, Carla Castiglia</creator><creator>Pfeifer, Carmem Silvia</creator><creator>Furuse, Adilson Yoshio</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3107-5430</orcidid><orcidid>https://orcid.org/0000-0002-6636-8022</orcidid><orcidid>https://orcid.org/0000-0003-4705-6354</orcidid><orcidid>https://orcid.org/0000-0002-4415-850X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4069</orcidid><orcidid>https://orcid.org/0000-0002-1587-3838</orcidid></search><sort><creationdate>202012</creationdate><title>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</title><author>Guimarães, Genine Moreira de Freitas ; Bronze-Uhle, Erika Soares ; Lisboa-Filho, Paulo Noronha ; Fugolin, Ana Paula Piovezan ; Borges, Ana Flavia Sanches ; Gonzaga, Carla Castiglia ; Pfeifer, Carmem Silvia ; Furuse, Adilson Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-ff6999002669366d100f93d88e0d75cd68c7f839e3bcfc8ba1dd6c527cc202973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Barium</topic><topic>Bisphenol A glycidyl methacrylate</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Evaluation</topic><topic>Functionalization</topic><topic>Methacrylates</topic><topic>Microhardness</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Polymer matrix composites</topic><topic>Polymer structure</topic><topic>Properties (attributes)</topic><topic>Resins</topic><topic>Softening</topic><topic>Titanium dioxide</topic><topic>Triethylene glycol dimethacrylate</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Genine Moreira de Freitas</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><creatorcontrib>Fugolin, Ana Paula Piovezan</creatorcontrib><creatorcontrib>Borges, Ana Flavia Sanches</creatorcontrib><creatorcontrib>Gonzaga, Carla Castiglia</creatorcontrib><creatorcontrib>Pfeifer, Carmem Silvia</creatorcontrib><creatorcontrib>Furuse, Adilson Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Genine Moreira de Freitas</au><au>Bronze-Uhle, Erika Soares</au><au>Lisboa-Filho, Paulo Noronha</au><au>Fugolin, Ana Paula Piovezan</au><au>Borges, Ana Flavia Sanches</au><au>Gonzaga, Carla Castiglia</au><au>Pfeifer, Carmem Silvia</au><au>Furuse, Adilson Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites</atitle><jtitle>Dental materials</jtitle><date>2020-12</date><risdate>2020</risdate><volume>36</volume><issue>12</issue><spage>1544</spage><epage>1556</epage><pages>1544-1556</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. TiO2 nanostructures were synthesized and functionalized, using 3-(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC - at 0 h and 24 h), maximum polymerization rate (Rpmax), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (α = 0.05). TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p &lt; 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p &lt; 0.05). Rpmax was higher for 0.3-wt%-APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p &lt; 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPM-nanotubes, and 0.3-wt%-non-functionalized-nanoparticles. The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening. The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.dental.2020.09.013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3107-5430</orcidid><orcidid>https://orcid.org/0000-0002-6636-8022</orcidid><orcidid>https://orcid.org/0000-0003-4705-6354</orcidid><orcidid>https://orcid.org/0000-0002-4415-850X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4069</orcidid><orcidid>https://orcid.org/0000-0002-1587-3838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2020-12, Vol.36 (12), p.1544-1556
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_journals_2478111402
source Elsevier ScienceDirect Journals
subjects Aluminum
Aluminum silicates
Barium
Bisphenol A glycidyl methacrylate
Composite materials
Ethanol
Evaluation
Functionalization
Methacrylates
Microhardness
Nanoparticles
Nanostructure
Nanostructures
Nanotechnology
Nanotubes
Polymer matrix composites
Polymer structure
Properties (attributes)
Resins
Softening
Titanium dioxide
Triethylene glycol dimethacrylate
Variance analysis
title Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20addition%20of%20functionalized%20TiO2%20nanotubes%20and%20nanoparticles%20on%20properties%20of%20experimental%20resin%20composites&rft.jtitle=Dental%20materials&rft.au=Guimar%C3%A3es,%20Genine%20Moreira%20de%20Freitas&rft.date=2020-12&rft.volume=36&rft.issue=12&rft.spage=1544&rft.epage=1556&rft.pages=1544-1556&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2020.09.013&rft_dat=%3Cproquest_cross%3E2478111402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478111402&rft_id=info:pmid/&rft_els_id=S0109564120302530&rfr_iscdi=true