A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion
Earthquakes are the main cause of slope failure in seismic active regions. In this study, we present a method for analyzing the seismic stability of a plane jointed rock slope with two blocks. In this analysis, the Barton-Bandis failure criterion is applied, considering the nonlinear characteristics...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2020-12, Vol.136, p.104487, Article 104487 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104487 |
container_title | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
container_volume | 136 |
creator | Zhao, Lianheng Yu, Chenghao Cheng, Xiao Zuo, Shi Jiao, Kangfu |
description | Earthquakes are the main cause of slope failure in seismic active regions. In this study, we present a method for analyzing the seismic stability of a plane jointed rock slope with two blocks. In this analysis, the Barton-Bandis failure criterion is applied, considering the nonlinear characteristics of rock joints. Based on the limit equilibrium principle, we derived the safety factor of a jointed rock slope subjected to the modified pseudo-dynamic seismic forces. In addition, the analytical method developed in this study explains the interaction force between two blocks. Hence, it can effectively analyze the stability of a jointed rock slope and distinguish the failure modes. Further, a parametric study was conducted to investigate the effects of geometric and material properties on the safety factor of a hypothetical slope. The results show that the slope stability is significantly influenced by the geometry of the slope and the parameters including the joint roughness coefficient JRC, the horizontal seismic acceleration coefficient kh, the joint compressive strength JCS, and the basic friction angle of the structural plane ϕb. Moreover, the accuracy of the derivation is verified by the universal distinct element code UDEC 6.0. A parametric sensitivity analysis is used to determine the key parameters affecting slope stability. Finally, a set of seismic stability design charts is produced for preliminary design. |
doi_str_mv | 10.1016/j.ijrmms.2020.104487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478111131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160920308558</els_id><sourcerecordid>2478111131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-718f24392c5fb74b120e6931e91491b8506465fddf69e8ba526f75170cc7f3c93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOD7-gYuA645Jm0e7EWYGXzDgRtchTW80tW3G3Iww_94Ode3d3MvlnAPny7IbRpeMMnnXLX0XhwGXBS2OL84rdZItWKXKnAsuTqe7lCJnktbn2QViRymVhVSLrF2RAdJnaIkLkSB4HLwlmEzje58OxIymP6BHEhzpgh8TtCQG-0WwDztAskc_fpC1iSmM-dqM7SR1xvf7CMRGnyD6MF5lZ870CNd_-zJ7f3x42zzn29enl81qm5tSqJQrVrmCl3VhhWsUb1hBQdYlg5rxmjWVoJJL4drWyRqqxohCOiWYotYqV9q6vMxu59xdDN97wKS7sI9TA9QFVxWbpmSTis8qGwNiBKd30Q8mHjSj-shTd3rmqY889cxzst3PNpga_HiIGq2H0ULrI9ik2-D_D_gFT22Anw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478111131</pqid></control><display><type>article</type><title>A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Lianheng ; Yu, Chenghao ; Cheng, Xiao ; Zuo, Shi ; Jiao, Kangfu</creator><creatorcontrib>Zhao, Lianheng ; Yu, Chenghao ; Cheng, Xiao ; Zuo, Shi ; Jiao, Kangfu</creatorcontrib><description>Earthquakes are the main cause of slope failure in seismic active regions. In this study, we present a method for analyzing the seismic stability of a plane jointed rock slope with two blocks. In this analysis, the Barton-Bandis failure criterion is applied, considering the nonlinear characteristics of rock joints. Based on the limit equilibrium principle, we derived the safety factor of a jointed rock slope subjected to the modified pseudo-dynamic seismic forces. In addition, the analytical method developed in this study explains the interaction force between two blocks. Hence, it can effectively analyze the stability of a jointed rock slope and distinguish the failure modes. Further, a parametric study was conducted to investigate the effects of geometric and material properties on the safety factor of a hypothetical slope. The results show that the slope stability is significantly influenced by the geometry of the slope and the parameters including the joint roughness coefficient JRC, the horizontal seismic acceleration coefficient kh, the joint compressive strength JCS, and the basic friction angle of the structural plane ϕb. Moreover, the accuracy of the derivation is verified by the universal distinct element code UDEC 6.0. A parametric sensitivity analysis is used to determine the key parameters affecting slope stability. Finally, a set of seismic stability design charts is produced for preliminary design.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2020.104487</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Barton-bandis failure criterion ; Compressive strength ; Criteria ; Earthquakes ; Failure analysis ; Failure modes ; Jointed rock ; Material properties ; Mathematical analysis ; Modified pseudo-dynamic method ; Parameter sensitivity ; Preliminary designs ; Rock slope ; Rocks ; Roughness coefficient ; Safety factors ; Seismic activity ; Seismic analysis ; Seismic stability ; Seismic stability charts ; Sensitivity analysis ; Slope stability ; Stability analysis</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-12, Vol.136, p.104487, Article 104487</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-718f24392c5fb74b120e6931e91491b8506465fddf69e8ba526f75170cc7f3c93</citedby><cites>FETCH-LOGICAL-a357t-718f24392c5fb74b120e6931e91491b8506465fddf69e8ba526f75170cc7f3c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1365160920308558$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhao, Lianheng</creatorcontrib><creatorcontrib>Yu, Chenghao</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Zuo, Shi</creatorcontrib><creatorcontrib>Jiao, Kangfu</creatorcontrib><title>A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Earthquakes are the main cause of slope failure in seismic active regions. In this study, we present a method for analyzing the seismic stability of a plane jointed rock slope with two blocks. In this analysis, the Barton-Bandis failure criterion is applied, considering the nonlinear characteristics of rock joints. Based on the limit equilibrium principle, we derived the safety factor of a jointed rock slope subjected to the modified pseudo-dynamic seismic forces. In addition, the analytical method developed in this study explains the interaction force between two blocks. Hence, it can effectively analyze the stability of a jointed rock slope and distinguish the failure modes. Further, a parametric study was conducted to investigate the effects of geometric and material properties on the safety factor of a hypothetical slope. The results show that the slope stability is significantly influenced by the geometry of the slope and the parameters including the joint roughness coefficient JRC, the horizontal seismic acceleration coefficient kh, the joint compressive strength JCS, and the basic friction angle of the structural plane ϕb. Moreover, the accuracy of the derivation is verified by the universal distinct element code UDEC 6.0. A parametric sensitivity analysis is used to determine the key parameters affecting slope stability. Finally, a set of seismic stability design charts is produced for preliminary design.</description><subject>Barton-bandis failure criterion</subject><subject>Compressive strength</subject><subject>Criteria</subject><subject>Earthquakes</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Jointed rock</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Modified pseudo-dynamic method</subject><subject>Parameter sensitivity</subject><subject>Preliminary designs</subject><subject>Rock slope</subject><subject>Rocks</subject><subject>Roughness coefficient</subject><subject>Safety factors</subject><subject>Seismic activity</subject><subject>Seismic analysis</subject><subject>Seismic stability</subject><subject>Seismic stability charts</subject><subject>Sensitivity analysis</subject><subject>Slope stability</subject><subject>Stability analysis</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOD7-gYuA645Jm0e7EWYGXzDgRtchTW80tW3G3Iww_94Ode3d3MvlnAPny7IbRpeMMnnXLX0XhwGXBS2OL84rdZItWKXKnAsuTqe7lCJnktbn2QViRymVhVSLrF2RAdJnaIkLkSB4HLwlmEzje58OxIymP6BHEhzpgh8TtCQG-0WwDztAskc_fpC1iSmM-dqM7SR1xvf7CMRGnyD6MF5lZ870CNd_-zJ7f3x42zzn29enl81qm5tSqJQrVrmCl3VhhWsUb1hBQdYlg5rxmjWVoJJL4drWyRqqxohCOiWYotYqV9q6vMxu59xdDN97wKS7sI9TA9QFVxWbpmSTis8qGwNiBKd30Q8mHjSj-shTd3rmqY889cxzst3PNpga_HiIGq2H0ULrI9ik2-D_D_gFT22Anw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Zhao, Lianheng</creator><creator>Yu, Chenghao</creator><creator>Cheng, Xiao</creator><creator>Zuo, Shi</creator><creator>Jiao, Kangfu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202012</creationdate><title>A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion</title><author>Zhao, Lianheng ; Yu, Chenghao ; Cheng, Xiao ; Zuo, Shi ; Jiao, Kangfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-718f24392c5fb74b120e6931e91491b8506465fddf69e8ba526f75170cc7f3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barton-bandis failure criterion</topic><topic>Compressive strength</topic><topic>Criteria</topic><topic>Earthquakes</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Jointed rock</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Modified pseudo-dynamic method</topic><topic>Parameter sensitivity</topic><topic>Preliminary designs</topic><topic>Rock slope</topic><topic>Rocks</topic><topic>Roughness coefficient</topic><topic>Safety factors</topic><topic>Seismic activity</topic><topic>Seismic analysis</topic><topic>Seismic stability</topic><topic>Seismic stability charts</topic><topic>Sensitivity analysis</topic><topic>Slope stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lianheng</creatorcontrib><creatorcontrib>Yu, Chenghao</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Zuo, Shi</creatorcontrib><creatorcontrib>Jiao, Kangfu</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lianheng</au><au>Yu, Chenghao</au><au>Cheng, Xiao</au><au>Zuo, Shi</au><au>Jiao, Kangfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>136</volume><spage>104487</spage><pages>104487-</pages><artnum>104487</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Earthquakes are the main cause of slope failure in seismic active regions. In this study, we present a method for analyzing the seismic stability of a plane jointed rock slope with two blocks. In this analysis, the Barton-Bandis failure criterion is applied, considering the nonlinear characteristics of rock joints. Based on the limit equilibrium principle, we derived the safety factor of a jointed rock slope subjected to the modified pseudo-dynamic seismic forces. In addition, the analytical method developed in this study explains the interaction force between two blocks. Hence, it can effectively analyze the stability of a jointed rock slope and distinguish the failure modes. Further, a parametric study was conducted to investigate the effects of geometric and material properties on the safety factor of a hypothetical slope. The results show that the slope stability is significantly influenced by the geometry of the slope and the parameters including the joint roughness coefficient JRC, the horizontal seismic acceleration coefficient kh, the joint compressive strength JCS, and the basic friction angle of the structural plane ϕb. Moreover, the accuracy of the derivation is verified by the universal distinct element code UDEC 6.0. A parametric sensitivity analysis is used to determine the key parameters affecting slope stability. Finally, a set of seismic stability design charts is produced for preliminary design.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2020.104487</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1609 |
ispartof | International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-12, Vol.136, p.104487, Article 104487 |
issn | 1365-1609 1873-4545 |
language | eng |
recordid | cdi_proquest_journals_2478111131 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Barton-bandis failure criterion Compressive strength Criteria Earthquakes Failure analysis Failure modes Jointed rock Material properties Mathematical analysis Modified pseudo-dynamic method Parameter sensitivity Preliminary designs Rock slope Rocks Roughness coefficient Safety factors Seismic activity Seismic analysis Seismic stability Seismic stability charts Sensitivity analysis Slope stability Stability analysis |
title | A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20seismic%20stability%20analysis%20of%20jointed%20rock%20slopes%20using%20Barton-Bandis%20failure%20criterion&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Zhao,%20Lianheng&rft.date=2020-12&rft.volume=136&rft.spage=104487&rft.pages=104487-&rft.artnum=104487&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2020.104487&rft_dat=%3Cproquest_cross%3E2478111131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478111131&rft_id=info:pmid/&rft_els_id=S1365160920308558&rfr_iscdi=true |