PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models

Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Banerjee, Imon, Rao, Vinayak A, Honnappa, Harsha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Banerjee, Imon
Rao, Vinayak A
Honnappa, Harsha
description Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seeks to characterize the resulting, typically intractable, posterior distributions. We present a PAC-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2477836866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477836866</sourcerecordid><originalsourceid>FETCH-proquest_journals_24778368663</originalsourceid><addsrcrecordid>eNqNzMEKgkAQgOElCJLyHQY6C7arq9cUo4vgQbrKgiNo5tiMBr19HXqATv_l498oTxtzCtJI653yRYYwDLVNdBwbTxXVOQ8y90aBjNapFaAJbo57t_Q0uRFqfMzI2EJFsiD3xAIdMZSO7_SCkloc5aC2nRsF_V_36ngp6vwazEzPFWVpBlr5u5NGR0mSGptaa_5THyZQOn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477836866</pqid></control><display><type>article</type><title>PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models</title><source>Free E- Journals</source><creator>Banerjee, Imon ; Rao, Vinayak A ; Honnappa, Harsha</creator><creatorcontrib>Banerjee, Imon ; Rao, Vinayak A ; Honnappa, Harsha</creatorcontrib><description>Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seeks to characterize the resulting, typically intractable, posterior distributions. We present a PAC-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Bayesian analysis ; Markov chains</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Banerjee, Imon</creatorcontrib><creatorcontrib>Rao, Vinayak A</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><title>PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models</title><title>arXiv.org</title><description>Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seeks to characterize the resulting, typically intractable, posterior distributions. We present a PAC-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Markov chains</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMEKgkAQgOElCJLyHQY6C7arq9cUo4vgQbrKgiNo5tiMBr19HXqATv_l498oTxtzCtJI653yRYYwDLVNdBwbTxXVOQ8y90aBjNapFaAJbo57t_Q0uRFqfMzI2EJFsiD3xAIdMZSO7_SCkloc5aC2nRsF_V_36ngp6vwazEzPFWVpBlr5u5NGR0mSGptaa_5THyZQOn4</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Banerjee, Imon</creator><creator>Rao, Vinayak A</creator><creator>Honnappa, Harsha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210113</creationdate><title>PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models</title><author>Banerjee, Imon ; Rao, Vinayak A ; Honnappa, Harsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24778368663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Markov chains</topic><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Imon</creatorcontrib><creatorcontrib>Rao, Vinayak A</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Imon</au><au>Rao, Vinayak A</au><au>Honnappa, Harsha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models</atitle><jtitle>arXiv.org</jtitle><date>2021-01-13</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seeks to characterize the resulting, typically intractable, posterior distributions. We present a PAC-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2477836866
source Free E- Journals
subjects Approximation
Bayesian analysis
Markov chains
title PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PAC-Bayes%20Bounds%20on%20Variational%20Tempered%20Posteriors%20for%20Markov%20Models&rft.jtitle=arXiv.org&rft.au=Banerjee,%20Imon&rft.date=2021-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2477836866%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477836866&rft_id=info:pmid/&rfr_iscdi=true