Stability of micro-milling thin-walled part process

Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021, Vol.112 (5-6), p.1529-1544
Hauptverfasser: Jia, Zhenyuan, Lu, Xiaohong, Yang, Kun, Sun, Xvdong, Liang, Steven Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1544
container_issue 5-6
container_start_page 1529
container_title International journal of advanced manufacturing technology
container_volume 112
creator Jia, Zhenyuan
Lu, Xiaohong
Yang, Kun
Sun, Xvdong
Liang, Steven Y.
description Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.
doi_str_mv 10.1007/s00170-020-06509-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477822134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477822134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEdfwFXBdfQkaZN0KYM3GHChrkOSpmOGtB2TDs68vdEK7lwczua_8SF0SeCaAIibBEAEYKD5eA0N3h-hglSMYQakPkYFUC4xE1yeorOUNlnOCZcFYi-TNj746VCOXdl7G0fc-xD8sC6ndz_gTx2Ca8utjlO5jaN1KZ2jk06H5C5-_wK93d-9Lh_x6vnhaXm7wpaRZsK1MbrqmKilcS0XUtemo1SCk7rReZqxjoA14DqtaV4GVrS20aaxYJmoGrZAV3Nu7v3YuTSpzbiLQ65UtBJCUkpYlVV0VuXpKUXXqW30vY4HRUB9w1EzHJXhqB84ap9NbDalLB7WLv5F_-P6Ank8Z9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477822134</pqid></control><display><type>article</type><title>Stability of micro-milling thin-walled part process</title><source>Springer Nature - Complete Springer Journals</source><creator>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</creator><creatorcontrib>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</creatorcontrib><description>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06509-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; Dynamic characteristics ; Dynamic stability ; Engineering ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Rayleigh-Ritz method ; Surface properties ; Transfer functions</subject><ispartof>International journal of advanced manufacturing technology, 2021, Vol.112 (5-6), p.1529-1544</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</citedby><cites>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06509-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06509-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Jia, Zhenyuan</creatorcontrib><creatorcontrib>Lu, Xiaohong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sun, Xvdong</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Stability of micro-milling thin-walled part process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Dynamic characteristics</subject><subject>Dynamic stability</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Rayleigh-Ritz method</subject><subject>Surface properties</subject><subject>Transfer functions</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoWEdfwFXBdfQkaZN0KYM3GHChrkOSpmOGtB2TDs68vdEK7lwczua_8SF0SeCaAIibBEAEYKD5eA0N3h-hglSMYQakPkYFUC4xE1yeorOUNlnOCZcFYi-TNj746VCOXdl7G0fc-xD8sC6ndz_gTx2Ca8utjlO5jaN1KZ2jk06H5C5-_wK93d-9Lh_x6vnhaXm7wpaRZsK1MbrqmKilcS0XUtemo1SCk7rReZqxjoA14DqtaV4GVrS20aaxYJmoGrZAV3Nu7v3YuTSpzbiLQ65UtBJCUkpYlVV0VuXpKUXXqW30vY4HRUB9w1EzHJXhqB84ap9NbDalLB7WLv5F_-P6Ank8Z9A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jia, Zhenyuan</creator><creator>Lu, Xiaohong</creator><creator>Yang, Kun</creator><creator>Sun, Xvdong</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Stability of micro-milling thin-walled part process</title><author>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Dynamic characteristics</topic><topic>Dynamic stability</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Rayleigh-Ritz method</topic><topic>Surface properties</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhenyuan</creatorcontrib><creatorcontrib>Lu, Xiaohong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sun, Xvdong</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Zhenyuan</au><au>Lu, Xiaohong</au><au>Yang, Kun</au><au>Sun, Xvdong</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of micro-milling thin-walled part process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021</date><risdate>2021</risdate><volume>112</volume><issue>5-6</issue><spage>1529</spage><epage>1544</epage><pages>1529-1544</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06509-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021, Vol.112 (5-6), p.1529-1544
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2477822134
source Springer Nature - Complete Springer Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Cutting force
Cutting parameters
Dynamic characteristics
Dynamic stability
Engineering
Industrial and Production Engineering
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Rayleigh-Ritz method
Surface properties
Transfer functions
title Stability of micro-milling thin-walled part process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20micro-milling%20thin-walled%20part%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jia,%20Zhenyuan&rft.date=2021&rft.volume=112&rft.issue=5-6&rft.spage=1529&rft.epage=1544&rft.pages=1529-1544&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06509-x&rft_dat=%3Cproquest_cross%3E2477822134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477822134&rft_id=info:pmid/&rfr_iscdi=true