Stability of micro-milling thin-walled part process
Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021, Vol.112 (5-6), p.1529-1544 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1544 |
---|---|
container_issue | 5-6 |
container_start_page | 1529 |
container_title | International journal of advanced manufacturing technology |
container_volume | 112 |
creator | Jia, Zhenyuan Lu, Xiaohong Yang, Kun Sun, Xvdong Liang, Steven Y. |
description | Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting. |
doi_str_mv | 10.1007/s00170-020-06509-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477822134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477822134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEdfwFXBdfQkaZN0KYM3GHChrkOSpmOGtB2TDs68vdEK7lwczua_8SF0SeCaAIibBEAEYKD5eA0N3h-hglSMYQakPkYFUC4xE1yeorOUNlnOCZcFYi-TNj746VCOXdl7G0fc-xD8sC6ndz_gTx2Ca8utjlO5jaN1KZ2jk06H5C5-_wK93d-9Lh_x6vnhaXm7wpaRZsK1MbrqmKilcS0XUtemo1SCk7rReZqxjoA14DqtaV4GVrS20aaxYJmoGrZAV3Nu7v3YuTSpzbiLQ65UtBJCUkpYlVV0VuXpKUXXqW30vY4HRUB9w1EzHJXhqB84ap9NbDalLB7WLv5F_-P6Ank8Z9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477822134</pqid></control><display><type>article</type><title>Stability of micro-milling thin-walled part process</title><source>Springer Nature - Complete Springer Journals</source><creator>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</creator><creatorcontrib>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</creatorcontrib><description>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06509-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; Dynamic characteristics ; Dynamic stability ; Engineering ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Rayleigh-Ritz method ; Surface properties ; Transfer functions</subject><ispartof>International journal of advanced manufacturing technology, 2021, Vol.112 (5-6), p.1529-1544</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</citedby><cites>FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06509-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06509-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Jia, Zhenyuan</creatorcontrib><creatorcontrib>Lu, Xiaohong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sun, Xvdong</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Stability of micro-milling thin-walled part process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Dynamic characteristics</subject><subject>Dynamic stability</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Rayleigh-Ritz method</subject><subject>Surface properties</subject><subject>Transfer functions</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoWEdfwFXBdfQkaZN0KYM3GHChrkOSpmOGtB2TDs68vdEK7lwczua_8SF0SeCaAIibBEAEYKD5eA0N3h-hglSMYQakPkYFUC4xE1yeorOUNlnOCZcFYi-TNj746VCOXdl7G0fc-xD8sC6ndz_gTx2Ca8utjlO5jaN1KZ2jk06H5C5-_wK93d-9Lh_x6vnhaXm7wpaRZsK1MbrqmKilcS0XUtemo1SCk7rReZqxjoA14DqtaV4GVrS20aaxYJmoGrZAV3Nu7v3YuTSpzbiLQ65UtBJCUkpYlVV0VuXpKUXXqW30vY4HRUB9w1EzHJXhqB84ap9NbDalLB7WLv5F_-P6Ank8Z9A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jia, Zhenyuan</creator><creator>Lu, Xiaohong</creator><creator>Yang, Kun</creator><creator>Sun, Xvdong</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Stability of micro-milling thin-walled part process</title><author>Jia, Zhenyuan ; Lu, Xiaohong ; Yang, Kun ; Sun, Xvdong ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5bba4f3758bed678a5bf2280e8a9a433bce10cb0efaa27680c7dc9ab9c0c37493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Dynamic characteristics</topic><topic>Dynamic stability</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Rayleigh-Ritz method</topic><topic>Surface properties</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhenyuan</creatorcontrib><creatorcontrib>Lu, Xiaohong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sun, Xvdong</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Zhenyuan</au><au>Lu, Xiaohong</au><au>Yang, Kun</au><au>Sun, Xvdong</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of micro-milling thin-walled part process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021</date><risdate>2021</risdate><volume>112</volume><issue>5-6</issue><spage>1529</spage><epage>1544</epage><pages>1529-1544</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Micro-scale thin-walled parts have the characteristics of small size and low rigidity, so chatter is very easy to occur in high speed micro-milling, which influences machining precision and surface quality of the parts. To solve this problem, the authors first establish micro-milling force models in micro-milling thin-walled parts that consider the elastic deflection of both thin-walled part and micro-milling tool. According to the Lagrange’s equation, the dynamic characteristics of thin-walled part that vary with the cutting position of the tool are obtained combined with the Rayleigh-Ritz method. The relative transfer function between the micro-milling tool and the thin-walled part is achieved through the relationship between cutting force and vibration vector and then the dynamic characteristics of the system are obtained. Finally, the stability lobe diagram is drawn through time-domain simulation and verified by micro-milling experiments. The comparison results show that the prediction results of the stability lobe diagram are consistent with the experimental results. The research is a meaningful exploration of the mechanism of micro-milling thin-walled parts and provides a basis for the selection of cutting parameters for stable cutting.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06509-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021, Vol.112 (5-6), p.1529-1544 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2477822134 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Cutting force Cutting parameters Dynamic characteristics Dynamic stability Engineering Industrial and Production Engineering Mechanical Engineering Media Management Milling (machining) Original Article Rayleigh-Ritz method Surface properties Transfer functions |
title | Stability of micro-milling thin-walled part process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20micro-milling%20thin-walled%20part%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jia,%20Zhenyuan&rft.date=2021&rft.volume=112&rft.issue=5-6&rft.spage=1529&rft.epage=1544&rft.pages=1529-1544&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06509-x&rft_dat=%3Cproquest_cross%3E2477822134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477822134&rft_id=info:pmid/&rfr_iscdi=true |