Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration
A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concret...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2020-12, Vol.207, p.262-278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | |
container_start_page | 262 |
container_title | International journal of solids and structures |
container_volume | 207 |
creator | Gallyamov, E.R. Cuba Ramos, A.I. Corrado, M. Rezakhani, R. Molinari, J.-F. |
description | A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE. |
doi_str_mv | 10.1016/j.ijsolstr.2020.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477707050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320303942</els_id><sourcerecordid>2477707050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EUoaBK0SWWPdQ7j93s0o0SgApiA2srRq7HNx42hPbHSn34aC4GcKWjS2Vv_fKVY-xSwE7AaJ_P-3clIJPOe5qqNfiDgS8YBsxyLGqRdu_ZBsoL5Xsh-aCvU5pAoC2GWHDfn1ZfHZV0uiJH4Mh7918z4PlOsw6UiZejBedl0iJo7WkMxl-eOLof6IvSuedRh4JdXZh_sD3YTn98cg_iiOlkHQ4Oc0NHvGeOD0Gv6wkx9mcGdTxGfrX1JQjuhBxRd-wVxZ9ord_7y37fnvzbf-puvv68fP--q7SzTDkaoThcMAadNNK7AQOZjhYA1IAdmPb0tjUdrQ4tgSdrMWgyVKPhlrsO9Foarbs3dn3FMPDQimrKSxxLi1V3UopQUIHherP1PrtFMmqU3RHjE9KgFoTUZN6TkStiaz1kkgRXp2FVGZ4dBRV0o5mTcbFslZlgvufxW__pp1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477707050</pqid></control><display><type>article</type><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><source>EZB Free E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</creator><creatorcontrib>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</creatorcontrib><description>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.10.010</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aggregates ; Alkali-silica reaction ; Alkali-silica reactions ; Concrete ; Concrete deterioration ; Concrete structures ; Damage assessment ; Damage model ; Degradation ; FE2 ; High performance computing ; Homogenization ; Iterative methods ; Mathematical analysis ; Mechanical analysis ; Mesoscale phenomena ; Mortars (material) ; Silicon dioxide ; Stiffness ; Structural damage ; Temperature dependence ; Tensors ; Two dimensional models</subject><ispartof>International journal of solids and structures, 2020-12, Vol.207, p.262-278</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</citedby><cites>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2020.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gallyamov, E.R.</creatorcontrib><creatorcontrib>Cuba Ramos, A.I.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Rezakhani, R.</creatorcontrib><creatorcontrib>Molinari, J.-F.</creatorcontrib><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><title>International journal of solids and structures</title><description>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</description><subject>Aggregates</subject><subject>Alkali-silica reaction</subject><subject>Alkali-silica reactions</subject><subject>Concrete</subject><subject>Concrete deterioration</subject><subject>Concrete structures</subject><subject>Damage assessment</subject><subject>Damage model</subject><subject>Degradation</subject><subject>FE2</subject><subject>High performance computing</subject><subject>Homogenization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Mesoscale phenomena</subject><subject>Mortars (material)</subject><subject>Silicon dioxide</subject><subject>Stiffness</subject><subject>Structural damage</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Two dimensional models</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhS0EUoaBK0SWWPdQ7j93s0o0SgApiA2srRq7HNx42hPbHSn34aC4GcKWjS2Vv_fKVY-xSwE7AaJ_P-3clIJPOe5qqNfiDgS8YBsxyLGqRdu_ZBsoL5Xsh-aCvU5pAoC2GWHDfn1ZfHZV0uiJH4Mh7918z4PlOsw6UiZejBedl0iJo7WkMxl-eOLof6IvSuedRh4JdXZh_sD3YTn98cg_iiOlkHQ4Oc0NHvGeOD0Gv6wkx9mcGdTxGfrX1JQjuhBxRd-wVxZ9ord_7y37fnvzbf-puvv68fP--q7SzTDkaoThcMAadNNK7AQOZjhYA1IAdmPb0tjUdrQ4tgSdrMWgyVKPhlrsO9Foarbs3dn3FMPDQimrKSxxLi1V3UopQUIHherP1PrtFMmqU3RHjE9KgFoTUZN6TkStiaz1kkgRXp2FVGZ4dBRV0o5mTcbFslZlgvufxW__pp1q</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>Gallyamov, E.R.</creator><creator>Cuba Ramos, A.I.</creator><creator>Corrado, M.</creator><creator>Rezakhani, R.</creator><creator>Molinari, J.-F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20201215</creationdate><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><author>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Alkali-silica reaction</topic><topic>Alkali-silica reactions</topic><topic>Concrete</topic><topic>Concrete deterioration</topic><topic>Concrete structures</topic><topic>Damage assessment</topic><topic>Damage model</topic><topic>Degradation</topic><topic>FE2</topic><topic>High performance computing</topic><topic>Homogenization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Mesoscale phenomena</topic><topic>Mortars (material)</topic><topic>Silicon dioxide</topic><topic>Stiffness</topic><topic>Structural damage</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallyamov, E.R.</creatorcontrib><creatorcontrib>Cuba Ramos, A.I.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Rezakhani, R.</creatorcontrib><creatorcontrib>Molinari, J.-F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallyamov, E.R.</au><au>Cuba Ramos, A.I.</au><au>Corrado, M.</au><au>Rezakhani, R.</au><au>Molinari, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-12-15</date><risdate>2020</risdate><volume>207</volume><spage>262</spage><epage>278</epage><pages>262-278</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.10.010</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2020-12, Vol.207, p.262-278 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_2477707050 |
source | EZB Free E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Aggregates Alkali-silica reaction Alkali-silica reactions Concrete Concrete deterioration Concrete structures Damage assessment Damage model Degradation FE2 High performance computing Homogenization Iterative methods Mathematical analysis Mechanical analysis Mesoscale phenomena Mortars (material) Silicon dioxide Stiffness Structural damage Temperature dependence Tensors Two dimensional models |
title | Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modelling%20of%20concrete%20structures%20affected%20by%20alkali-silica%20reaction:%20Coupling%20the%20mesoscopic%20damage%20evolution%20and%20the%20macroscopic%20concrete%20deterioration&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Gallyamov,%20E.R.&rft.date=2020-12-15&rft.volume=207&rft.spage=262&rft.epage=278&rft.pages=262-278&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.10.010&rft_dat=%3Cproquest_cross%3E2477707050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477707050&rft_id=info:pmid/&rft_els_id=S0020768320303942&rfr_iscdi=true |