Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration

A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2020-12, Vol.207, p.262-278
Hauptverfasser: Gallyamov, E.R., Cuba Ramos, A.I., Corrado, M., Rezakhani, R., Molinari, J.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue
container_start_page 262
container_title International journal of solids and structures
container_volume 207
creator Gallyamov, E.R.
Cuba Ramos, A.I.
Corrado, M.
Rezakhani, R.
Molinari, J.-F.
description A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.
doi_str_mv 10.1016/j.ijsolstr.2020.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477707050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320303942</els_id><sourcerecordid>2477707050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EUoaBK0SWWPdQ7j93s0o0SgApiA2srRq7HNx42hPbHSn34aC4GcKWjS2Vv_fKVY-xSwE7AaJ_P-3clIJPOe5qqNfiDgS8YBsxyLGqRdu_ZBsoL5Xsh-aCvU5pAoC2GWHDfn1ZfHZV0uiJH4Mh7918z4PlOsw6UiZejBedl0iJo7WkMxl-eOLof6IvSuedRh4JdXZh_sD3YTn98cg_iiOlkHQ4Oc0NHvGeOD0Gv6wkx9mcGdTxGfrX1JQjuhBxRd-wVxZ9ord_7y37fnvzbf-puvv68fP--q7SzTDkaoThcMAadNNK7AQOZjhYA1IAdmPb0tjUdrQ4tgSdrMWgyVKPhlrsO9Foarbs3dn3FMPDQimrKSxxLi1V3UopQUIHherP1PrtFMmqU3RHjE9KgFoTUZN6TkStiaz1kkgRXp2FVGZ4dBRV0o5mTcbFslZlgvufxW__pp1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477707050</pqid></control><display><type>article</type><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><source>EZB Free E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</creator><creatorcontrib>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</creatorcontrib><description>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.10.010</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aggregates ; Alkali-silica reaction ; Alkali-silica reactions ; Concrete ; Concrete deterioration ; Concrete structures ; Damage assessment ; Damage model ; Degradation ; FE2 ; High performance computing ; Homogenization ; Iterative methods ; Mathematical analysis ; Mechanical analysis ; Mesoscale phenomena ; Mortars (material) ; Silicon dioxide ; Stiffness ; Structural damage ; Temperature dependence ; Tensors ; Two dimensional models</subject><ispartof>International journal of solids and structures, 2020-12, Vol.207, p.262-278</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</citedby><cites>FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2020.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gallyamov, E.R.</creatorcontrib><creatorcontrib>Cuba Ramos, A.I.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Rezakhani, R.</creatorcontrib><creatorcontrib>Molinari, J.-F.</creatorcontrib><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><title>International journal of solids and structures</title><description>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</description><subject>Aggregates</subject><subject>Alkali-silica reaction</subject><subject>Alkali-silica reactions</subject><subject>Concrete</subject><subject>Concrete deterioration</subject><subject>Concrete structures</subject><subject>Damage assessment</subject><subject>Damage model</subject><subject>Degradation</subject><subject>FE2</subject><subject>High performance computing</subject><subject>Homogenization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Mesoscale phenomena</subject><subject>Mortars (material)</subject><subject>Silicon dioxide</subject><subject>Stiffness</subject><subject>Structural damage</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Two dimensional models</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhS0EUoaBK0SWWPdQ7j93s0o0SgApiA2srRq7HNx42hPbHSn34aC4GcKWjS2Vv_fKVY-xSwE7AaJ_P-3clIJPOe5qqNfiDgS8YBsxyLGqRdu_ZBsoL5Xsh-aCvU5pAoC2GWHDfn1ZfHZV0uiJH4Mh7918z4PlOsw6UiZejBedl0iJo7WkMxl-eOLof6IvSuedRh4JdXZh_sD3YTn98cg_iiOlkHQ4Oc0NHvGeOD0Gv6wkx9mcGdTxGfrX1JQjuhBxRd-wVxZ9ord_7y37fnvzbf-puvv68fP--q7SzTDkaoThcMAadNNK7AQOZjhYA1IAdmPb0tjUdrQ4tgSdrMWgyVKPhlrsO9Foarbs3dn3FMPDQimrKSxxLi1V3UopQUIHherP1PrtFMmqU3RHjE9KgFoTUZN6TkStiaz1kkgRXp2FVGZ4dBRV0o5mTcbFslZlgvufxW__pp1q</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>Gallyamov, E.R.</creator><creator>Cuba Ramos, A.I.</creator><creator>Corrado, M.</creator><creator>Rezakhani, R.</creator><creator>Molinari, J.-F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20201215</creationdate><title>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</title><author>Gallyamov, E.R. ; Cuba Ramos, A.I. ; Corrado, M. ; Rezakhani, R. ; Molinari, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-908bba20c347a51a8d8bfd0710a5944e932f9fa94e057218cefe6ade4a6513ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Alkali-silica reaction</topic><topic>Alkali-silica reactions</topic><topic>Concrete</topic><topic>Concrete deterioration</topic><topic>Concrete structures</topic><topic>Damage assessment</topic><topic>Damage model</topic><topic>Degradation</topic><topic>FE2</topic><topic>High performance computing</topic><topic>Homogenization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Mesoscale phenomena</topic><topic>Mortars (material)</topic><topic>Silicon dioxide</topic><topic>Stiffness</topic><topic>Structural damage</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallyamov, E.R.</creatorcontrib><creatorcontrib>Cuba Ramos, A.I.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Rezakhani, R.</creatorcontrib><creatorcontrib>Molinari, J.-F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallyamov, E.R.</au><au>Cuba Ramos, A.I.</au><au>Corrado, M.</au><au>Rezakhani, R.</au><au>Molinari, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-12-15</date><risdate>2020</risdate><volume>207</volume><spage>262</spage><epage>278</epage><pages>262-278</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE). Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.10.010</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2020-12, Vol.207, p.262-278
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2477707050
source EZB Free E-Journals; Access via ScienceDirect (Elsevier)
subjects Aggregates
Alkali-silica reaction
Alkali-silica reactions
Concrete
Concrete deterioration
Concrete structures
Damage assessment
Damage model
Degradation
FE2
High performance computing
Homogenization
Iterative methods
Mathematical analysis
Mechanical analysis
Mesoscale phenomena
Mortars (material)
Silicon dioxide
Stiffness
Structural damage
Temperature dependence
Tensors
Two dimensional models
title Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modelling%20of%20concrete%20structures%20affected%20by%20alkali-silica%20reaction:%20Coupling%20the%20mesoscopic%20damage%20evolution%20and%20the%20macroscopic%20concrete%20deterioration&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Gallyamov,%20E.R.&rft.date=2020-12-15&rft.volume=207&rft.spage=262&rft.epage=278&rft.pages=262-278&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.10.010&rft_dat=%3Cproquest_cross%3E2477707050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477707050&rft_id=info:pmid/&rft_els_id=S0020768320303942&rfr_iscdi=true