Mathematical modeling and analysis of tumor-volume variation during radiotherapy

•We develop a tumor growth dynamical model on oxygenated tumor cells and hypoxic tumor cells with pulsed radiotherapy.•We investigate how the reoxygenation of hypoxic cells and the radiosensitivity influence the effect of tumor radiotherapy.•We simulate the volumetric imaging data from 12 available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2021-01, Vol.89, p.1074-1089
Hauptverfasser: Pang, Liuyong, Liu, Sanhong, Liu, Fang, Zhang, Xinan, Tian, Tianhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue
container_start_page 1074
container_title Applied Mathematical Modelling
container_volume 89
creator Pang, Liuyong
Liu, Sanhong
Liu, Fang
Zhang, Xinan
Tian, Tianhai
description •We develop a tumor growth dynamical model on oxygenated tumor cells and hypoxic tumor cells with pulsed radiotherapy.•We investigate how the reoxygenation of hypoxic cells and the radiosensitivity influence the effect of tumor radiotherapy.•We simulate the volumetric imaging data from 12 available head-and-neck cancer patients and obtain a good fitting effect.•We investigate the similarities and differences of tumor patients and provide some guidance for personalized treatment. Based on tumor radiobiologic mechanisms, this paper develops a new tumor growth dynamic model with radiotherapy. It investigates how the reoxygenation of hypoxic cells and the radiosensitivity of radiotherpy influence the effect of tumor radiotherapy. The existence of the positive periodic solution, the asymptotic stabilities of the tumor-free equilibrium and the hypoxic tumor cell-free periodic solution and the corresponding sufficient criteria are obtained in this paper. The theoretical results indicate that when the value of the sensitivity coefficient of radiotherapy becomes bigger and the reoxygenation rate of tumor cells becomes higher, the radiotherapy of tumor is more effective. In addition, we apply our model to simulate the volumetric imaging data from 12 available head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system and obtain a very good fitting effect. Finally, we apply patient specific parameters obtained by simulating clinical data of 12 tumor cases to investigate their individual similarities and differences, so that we can provide some guidance for medical workers to implement personalized treatment strategies for tumor patients.
doi_str_mv 10.1016/j.apm.2020.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477706754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X20303930</els_id><sourcerecordid>2477706754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-50193e23f512fe195b10bd035960aee7bdbba14aa67df0e4e23e2a19499e44213</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Fz62TNG0snmTxHyh6UPAWps1UU9pNTdqF_fZmWQ-ePAwzA-89Hj_GzjlkHHh52WU4DpkAARmoDMTVAVtADiqtQH4c_rmP2UkIHQAU8Vuw12ecvmjAyTbYJ4Mz1Nv1Z4JrEwf7bbAhcW0yzYPz6cb180DJBr2NBrdOzOx3ao_GuhjjcdyesqMW-0Bnv3vJ3u9u31YP6dPL_ePq5iltclFMaQG8yknkbcFFS7wqag61gbyoSkAiVZu6Ri4RS2VaIBmlJJBXsqpISsHzJbvY547efc8UJt252cfKQQuplIJSFTKq-F7VeBeCp1aP3g7ot5qD3oHTnY7g9A6cBqUjuOi53nso1t9Y8jo0ltYNGeupmbRx9h_3D2kwduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477706754</pqid></control><display><type>article</type><title>Mathematical modeling and analysis of tumor-volume variation during radiotherapy</title><source>EBSCOhost Business Source Complete</source><source>Access via ScienceDirect (Elsevier)</source><source>EBSCOhost Education Source</source><creator>Pang, Liuyong ; Liu, Sanhong ; Liu, Fang ; Zhang, Xinan ; Tian, Tianhai</creator><creatorcontrib>Pang, Liuyong ; Liu, Sanhong ; Liu, Fang ; Zhang, Xinan ; Tian, Tianhai</creatorcontrib><description>•We develop a tumor growth dynamical model on oxygenated tumor cells and hypoxic tumor cells with pulsed radiotherapy.•We investigate how the reoxygenation of hypoxic cells and the radiosensitivity influence the effect of tumor radiotherapy.•We simulate the volumetric imaging data from 12 available head-and-neck cancer patients and obtain a good fitting effect.•We investigate the similarities and differences of tumor patients and provide some guidance for personalized treatment. Based on tumor radiobiologic mechanisms, this paper develops a new tumor growth dynamic model with radiotherapy. It investigates how the reoxygenation of hypoxic cells and the radiosensitivity of radiotherpy influence the effect of tumor radiotherapy. The existence of the positive periodic solution, the asymptotic stabilities of the tumor-free equilibrium and the hypoxic tumor cell-free periodic solution and the corresponding sufficient criteria are obtained in this paper. The theoretical results indicate that when the value of the sensitivity coefficient of radiotherapy becomes bigger and the reoxygenation rate of tumor cells becomes higher, the radiotherapy of tumor is more effective. In addition, we apply our model to simulate the volumetric imaging data from 12 available head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system and obtain a very good fitting effect. Finally, we apply patient specific parameters obtained by simulating clinical data of 12 tumor cases to investigate their individual similarities and differences, so that we can provide some guidance for medical workers to implement personalized treatment strategies for tumor patients.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2020.07.028</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Computed tomography ; Data fitting ; Dynamic models ; Hypoxia ; Mathematical modeling ; Precise treatment strategies ; Radiation therapy ; Radiotherapy ; Reoxygenation of hypoxic tumor cells ; Tumors</subject><ispartof>Applied Mathematical Modelling, 2021-01, Vol.89, p.1074-1089</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-50193e23f512fe195b10bd035960aee7bdbba14aa67df0e4e23e2a19499e44213</citedby><cites>FETCH-LOGICAL-c325t-50193e23f512fe195b10bd035960aee7bdbba14aa67df0e4e23e2a19499e44213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2020.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Pang, Liuyong</creatorcontrib><creatorcontrib>Liu, Sanhong</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Tian, Tianhai</creatorcontrib><title>Mathematical modeling and analysis of tumor-volume variation during radiotherapy</title><title>Applied Mathematical Modelling</title><description>•We develop a tumor growth dynamical model on oxygenated tumor cells and hypoxic tumor cells with pulsed radiotherapy.•We investigate how the reoxygenation of hypoxic cells and the radiosensitivity influence the effect of tumor radiotherapy.•We simulate the volumetric imaging data from 12 available head-and-neck cancer patients and obtain a good fitting effect.•We investigate the similarities and differences of tumor patients and provide some guidance for personalized treatment. Based on tumor radiobiologic mechanisms, this paper develops a new tumor growth dynamic model with radiotherapy. It investigates how the reoxygenation of hypoxic cells and the radiosensitivity of radiotherpy influence the effect of tumor radiotherapy. The existence of the positive periodic solution, the asymptotic stabilities of the tumor-free equilibrium and the hypoxic tumor cell-free periodic solution and the corresponding sufficient criteria are obtained in this paper. The theoretical results indicate that when the value of the sensitivity coefficient of radiotherapy becomes bigger and the reoxygenation rate of tumor cells becomes higher, the radiotherapy of tumor is more effective. In addition, we apply our model to simulate the volumetric imaging data from 12 available head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system and obtain a very good fitting effect. Finally, we apply patient specific parameters obtained by simulating clinical data of 12 tumor cases to investigate their individual similarities and differences, so that we can provide some guidance for medical workers to implement personalized treatment strategies for tumor patients.</description><subject>Computed tomography</subject><subject>Data fitting</subject><subject>Dynamic models</subject><subject>Hypoxia</subject><subject>Mathematical modeling</subject><subject>Precise treatment strategies</subject><subject>Radiation therapy</subject><subject>Radiotherapy</subject><subject>Reoxygenation of hypoxic tumor cells</subject><subject>Tumors</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Fz62TNG0snmTxHyh6UPAWps1UU9pNTdqF_fZmWQ-ePAwzA-89Hj_GzjlkHHh52WU4DpkAARmoDMTVAVtADiqtQH4c_rmP2UkIHQAU8Vuw12ecvmjAyTbYJ4Mz1Nv1Z4JrEwf7bbAhcW0yzYPz6cb180DJBr2NBrdOzOx3ao_GuhjjcdyesqMW-0Bnv3vJ3u9u31YP6dPL_ePq5iltclFMaQG8yknkbcFFS7wqag61gbyoSkAiVZu6Ri4RS2VaIBmlJJBXsqpISsHzJbvY547efc8UJt252cfKQQuplIJSFTKq-F7VeBeCp1aP3g7ot5qD3oHTnY7g9A6cBqUjuOi53nso1t9Y8jo0ltYNGeupmbRx9h_3D2kwduw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Pang, Liuyong</creator><creator>Liu, Sanhong</creator><creator>Liu, Fang</creator><creator>Zhang, Xinan</creator><creator>Tian, Tianhai</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202101</creationdate><title>Mathematical modeling and analysis of tumor-volume variation during radiotherapy</title><author>Pang, Liuyong ; Liu, Sanhong ; Liu, Fang ; Zhang, Xinan ; Tian, Tianhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-50193e23f512fe195b10bd035960aee7bdbba14aa67df0e4e23e2a19499e44213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computed tomography</topic><topic>Data fitting</topic><topic>Dynamic models</topic><topic>Hypoxia</topic><topic>Mathematical modeling</topic><topic>Precise treatment strategies</topic><topic>Radiation therapy</topic><topic>Radiotherapy</topic><topic>Reoxygenation of hypoxic tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Liuyong</creatorcontrib><creatorcontrib>Liu, Sanhong</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Tian, Tianhai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Liuyong</au><au>Liu, Sanhong</au><au>Liu, Fang</au><au>Zhang, Xinan</au><au>Tian, Tianhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling and analysis of tumor-volume variation during radiotherapy</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-01</date><risdate>2021</risdate><volume>89</volume><spage>1074</spage><epage>1089</epage><pages>1074-1089</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•We develop a tumor growth dynamical model on oxygenated tumor cells and hypoxic tumor cells with pulsed radiotherapy.•We investigate how the reoxygenation of hypoxic cells and the radiosensitivity influence the effect of tumor radiotherapy.•We simulate the volumetric imaging data from 12 available head-and-neck cancer patients and obtain a good fitting effect.•We investigate the similarities and differences of tumor patients and provide some guidance for personalized treatment. Based on tumor radiobiologic mechanisms, this paper develops a new tumor growth dynamic model with radiotherapy. It investigates how the reoxygenation of hypoxic cells and the radiosensitivity of radiotherpy influence the effect of tumor radiotherapy. The existence of the positive periodic solution, the asymptotic stabilities of the tumor-free equilibrium and the hypoxic tumor cell-free periodic solution and the corresponding sufficient criteria are obtained in this paper. The theoretical results indicate that when the value of the sensitivity coefficient of radiotherapy becomes bigger and the reoxygenation rate of tumor cells becomes higher, the radiotherapy of tumor is more effective. In addition, we apply our model to simulate the volumetric imaging data from 12 available head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system and obtain a very good fitting effect. Finally, we apply patient specific parameters obtained by simulating clinical data of 12 tumor cases to investigate their individual similarities and differences, so that we can provide some guidance for medical workers to implement personalized treatment strategies for tumor patients.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2020.07.028</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2021-01, Vol.89, p.1074-1089
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2477706754
source EBSCOhost Business Source Complete; Access via ScienceDirect (Elsevier); EBSCOhost Education Source
subjects Computed tomography
Data fitting
Dynamic models
Hypoxia
Mathematical modeling
Precise treatment strategies
Radiation therapy
Radiotherapy
Reoxygenation of hypoxic tumor cells
Tumors
title Mathematical modeling and analysis of tumor-volume variation during radiotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20and%20analysis%20of%20tumor-volume%20variation%20during%20radiotherapy&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Pang,%20Liuyong&rft.date=2021-01&rft.volume=89&rft.spage=1074&rft.epage=1089&rft.pages=1074-1089&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2020.07.028&rft_dat=%3Cproquest_cross%3E2477706754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477706754&rft_id=info:pmid/&rft_els_id=S0307904X20303930&rfr_iscdi=true