Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-01, Vol.11 (2), p.n/a
Hauptverfasser: Wang, Wen‐Peng, Zhang, Juan, Chou, Jia, Yin, Ya‐Xia, You, Ya, Xin, Sen, Guo, Yu‐Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced energy materials
container_volume 11
creator Wang, Wen‐Peng
Zhang, Juan
Chou, Jia
Yin, Ya‐Xia
You, Ya
Xin, Sen
Guo, Yu‐Guo
description Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.
doi_str_mv 10.1002/aenm.202000791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477444751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477444751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EElXpyhyJOcXnOHU8lqpAUYGhMFtWfKau0qTYiVA23oE35ElwVVRGpjvdff_9p5-QS6BjoJRda6y3Y0YZpVRIOCEDmABPJwWnp8c-Y-dkFMImMpRLoFk2IA-rpnLG2d7Vb8lMt-vG4Pfn17zCsvVN1beYLOoWvdUlJrbxydK1a9dtI7PqKtv55Ea3ce8wXJAzq6uAo986JK-385fZfbp8vlvMpsu05IxByiyY-JfRJQiTgSlKWRSZ1FwzKbXMGTcYh1RrQMiFEbYoRJnnyHJAw0w2JFeHuzvfvHcYWrVpOl9HS8W4EJxzkUOkxgeq9E0IHq3aebfVvldA1T4ytY9MHSOLAnkQfLgK-39oNZ0_Pf5pfwD8WnHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477444751</pqid></control><display><type>article</type><title>Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Wen‐Peng ; Zhang, Juan ; Chou, Jia ; Yin, Ya‐Xia ; You, Ya ; Xin, Sen ; Guo, Yu‐Guo</creator><creatorcontrib>Wang, Wen‐Peng ; Zhang, Juan ; Chou, Jia ; Yin, Ya‐Xia ; You, Ya ; Xin, Sen ; Guo, Yu‐Guo</creatorcontrib><description>Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202000791</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; cathode–electrolyte interfaces ; Charge transfer ; Commercialization ; Electrochemistry ; Electrolytes ; Energy storage ; gel polymer electrolytes ; Liquid-solid interfaces ; Lithium sulfur batteries ; porous cathode hosts ; solid‐state electrolytes ; Solvents ; Storage batteries ; Sulfur</subject><ispartof>Advanced energy materials, 2021-01, Vol.11 (2), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3</citedby><cites>FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3</cites><orcidid>0000-0003-0322-8476 ; 0000-0002-0546-0626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202000791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202000791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>You, Ya</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><title>Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries</title><title>Advanced energy materials</title><description>Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.</description><subject>Cathodes</subject><subject>cathode–electrolyte interfaces</subject><subject>Charge transfer</subject><subject>Commercialization</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>gel polymer electrolytes</subject><subject>Liquid-solid interfaces</subject><subject>Lithium sulfur batteries</subject><subject>porous cathode hosts</subject><subject>solid‐state electrolytes</subject><subject>Solvents</subject><subject>Storage batteries</subject><subject>Sulfur</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EElXpyhyJOcXnOHU8lqpAUYGhMFtWfKau0qTYiVA23oE35ElwVVRGpjvdff_9p5-QS6BjoJRda6y3Y0YZpVRIOCEDmABPJwWnp8c-Y-dkFMImMpRLoFk2IA-rpnLG2d7Vb8lMt-vG4Pfn17zCsvVN1beYLOoWvdUlJrbxydK1a9dtI7PqKtv55Ea3ce8wXJAzq6uAo986JK-385fZfbp8vlvMpsu05IxByiyY-JfRJQiTgSlKWRSZ1FwzKbXMGTcYh1RrQMiFEbYoRJnnyHJAw0w2JFeHuzvfvHcYWrVpOl9HS8W4EJxzkUOkxgeq9E0IHq3aebfVvldA1T4ytY9MHSOLAnkQfLgK-39oNZ0_Pf5pfwD8WnHH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Wen‐Peng</creator><creator>Zhang, Juan</creator><creator>Chou, Jia</creator><creator>Yin, Ya‐Xia</creator><creator>You, Ya</creator><creator>Xin, Sen</creator><creator>Guo, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid><orcidid>https://orcid.org/0000-0002-0546-0626</orcidid></search><sort><creationdate>20210101</creationdate><title>Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries</title><author>Wang, Wen‐Peng ; Zhang, Juan ; Chou, Jia ; Yin, Ya‐Xia ; You, Ya ; Xin, Sen ; Guo, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathodes</topic><topic>cathode–electrolyte interfaces</topic><topic>Charge transfer</topic><topic>Commercialization</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>gel polymer electrolytes</topic><topic>Liquid-solid interfaces</topic><topic>Lithium sulfur batteries</topic><topic>porous cathode hosts</topic><topic>solid‐state electrolytes</topic><topic>Solvents</topic><topic>Storage batteries</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>You, Ya</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wen‐Peng</au><au>Zhang, Juan</au><au>Chou, Jia</au><au>Yin, Ya‐Xia</au><au>You, Ya</au><au>Xin, Sen</au><au>Guo, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202000791</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid><orcidid>https://orcid.org/0000-0002-0546-0626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-01, Vol.11 (2), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2477444751
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
cathode–electrolyte interfaces
Charge transfer
Commercialization
Electrochemistry
Electrolytes
Energy storage
gel polymer electrolytes
Liquid-solid interfaces
Lithium sulfur batteries
porous cathode hosts
solid‐state electrolytes
Solvents
Storage batteries
Sulfur
title Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidifying%20Cathode%E2%80%93Electrolyte%20Interface%20for%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Wen%E2%80%90Peng&rft.date=2021-01-01&rft.volume=11&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202000791&rft_dat=%3Cproquest_cross%3E2477444751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477444751&rft_id=info:pmid/&rfr_iscdi=true