Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer
The effect of ethylene–vinyl acetate copolymer (EVA) addition on the rheological properties of poly(lactic acid) (PLA) was studied. EVA exhibited strain-hardening behavior in the transient elongational viscosity due to its long-chain branch structure, whereas PLA did not show any strain-hardening. T...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2021-01, Vol.29 (1), p.121-129 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | Journal of polymers and the environment |
container_volume | 29 |
creator | Kugimoto, Daisuke Kouda, Shingo Yamaguchi, Masayuki |
description | The effect of ethylene–vinyl acetate copolymer (EVA) addition on the rheological properties of poly(lactic acid) (PLA) was studied. EVA exhibited strain-hardening behavior in the transient elongational viscosity due to its long-chain branch structure, whereas PLA did not show any strain-hardening. The blends showed sea-island structure, in which the size of EVA droplets decreased with the vinyl acetate content in EVA. It should be noted that the blends showed strain-hardening behavior even though EVA is not in the continuous phase. During elongational flow, EVA droplets deform to the fibrous shape owing to hydrodynamic force applied by the matrix PLA, and eventually their deformation is greatly reduced as a result of the strain-hardening. Consequently, the blend system behaved like a rigid-fiber dispersion, which are known to show enhanced elongational viscosity. Finally, the processability of a tubular-blown film was improved by the EVA addition because of the strain-hardening. |
doi_str_mv | 10.1007/s10924-020-01856-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477379167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477379167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4a3a101c8d7abdcd6c864e4cbd8a75cc0331701eb1f1e745cca6b388701d6a953</originalsourceid><addsrcrecordid>eNqNkM1KxDAQx4so-PkCngpeFKkmaZqkRynrB6wo4noNaTpdI7VZkyzSm-_gG_okZq3oTTzNMPx_M8kvSfYxOsEI8VOPUUlohgjKEBYFy4a1ZAsXnGSixOX6qmcsIwXNN5Nt758QQmUEtxJ1bRvTGq2CsX1q2_TWdsPhVOlgdHqmTXOU3j2C7ew8Zrr01tkFuGDApzNv-nk6CY9DBz18vL0_mH7oIgNBBUgru4ibnsHtJhut6jzsfdedZHY-ua8us-nNxVV1Ns00JSRkVOUKI6xFw1Xd6IZpwShQXTdC8UJrlOeYIww1bjFwGieK1bkQcdYwVRb5TnIw7l04-7IEH-STXbo-npSEcp7zEjMeU2RMaWe9d9DKhTPPyg0SI7lSKUeVMqqUXyrlEKHjEXqF2rZeG-g1_IDRZcFQKWgZO0RiWvw_XZnwpb6yyz5ENB9RH-P9HNzvH_543icsIpm-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477379167</pqid></control><display><type>article</type><title>Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kugimoto, Daisuke ; Kouda, Shingo ; Yamaguchi, Masayuki</creator><creatorcontrib>Kugimoto, Daisuke ; Kouda, Shingo ; Yamaguchi, Masayuki</creatorcontrib><description>The effect of ethylene–vinyl acetate copolymer (EVA) addition on the rheological properties of poly(lactic acid) (PLA) was studied. EVA exhibited strain-hardening behavior in the transient elongational viscosity due to its long-chain branch structure, whereas PLA did not show any strain-hardening. The blends showed sea-island structure, in which the size of EVA droplets decreased with the vinyl acetate content in EVA. It should be noted that the blends showed strain-hardening behavior even though EVA is not in the continuous phase. During elongational flow, EVA droplets deform to the fibrous shape owing to hydrodynamic force applied by the matrix PLA, and eventually their deformation is greatly reduced as a result of the strain-hardening. Consequently, the blend system behaved like a rigid-fiber dispersion, which are known to show enhanced elongational viscosity. Finally, the processability of a tubular-blown film was improved by the EVA addition because of the strain-hardening.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-020-01856-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetic acid ; Chain branching ; Chemistry ; Chemistry and Materials Science ; Copolymers ; Deformation ; Dispersion hardening ; Droplets ; Elongated structure ; Engineering ; Engineering, Environmental ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Ethylene ; Ethylene vinyl acetates ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Original Paper ; Physical Sciences ; Polylactic acid ; Polymer blends ; Polymer Science ; Polymer Sciences ; Rheological properties ; Rheology ; Science & Technology ; Strain hardening ; Technology ; Vinyl acetate ; Viscosity</subject><ispartof>Journal of polymers and the environment, 2021-01, Vol.29 (1), p.121-129</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000560984900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c422t-4a3a101c8d7abdcd6c864e4cbd8a75cc0331701eb1f1e745cca6b388701d6a953</citedby><cites>FETCH-LOGICAL-c422t-4a3a101c8d7abdcd6c864e4cbd8a75cc0331701eb1f1e745cca6b388701d6a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-020-01856-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-020-01856-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Kugimoto, Daisuke</creatorcontrib><creatorcontrib>Kouda, Shingo</creatorcontrib><creatorcontrib>Yamaguchi, Masayuki</creatorcontrib><title>Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><addtitle>J POLYM ENVIRON</addtitle><description>The effect of ethylene–vinyl acetate copolymer (EVA) addition on the rheological properties of poly(lactic acid) (PLA) was studied. EVA exhibited strain-hardening behavior in the transient elongational viscosity due to its long-chain branch structure, whereas PLA did not show any strain-hardening. The blends showed sea-island structure, in which the size of EVA droplets decreased with the vinyl acetate content in EVA. It should be noted that the blends showed strain-hardening behavior even though EVA is not in the continuous phase. During elongational flow, EVA droplets deform to the fibrous shape owing to hydrodynamic force applied by the matrix PLA, and eventually their deformation is greatly reduced as a result of the strain-hardening. Consequently, the blend system behaved like a rigid-fiber dispersion, which are known to show enhanced elongational viscosity. Finally, the processability of a tubular-blown film was improved by the EVA addition because of the strain-hardening.</description><subject>Acetic acid</subject><subject>Chain branching</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copolymers</subject><subject>Deformation</subject><subject>Dispersion hardening</subject><subject>Droplets</subject><subject>Elongated structure</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Ethylene</subject><subject>Ethylene vinyl acetates</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Polylactic acid</subject><subject>Polymer blends</subject><subject>Polymer Science</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Science & Technology</subject><subject>Strain hardening</subject><subject>Technology</subject><subject>Vinyl acetate</subject><subject>Viscosity</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM1KxDAQx4so-PkCngpeFKkmaZqkRynrB6wo4noNaTpdI7VZkyzSm-_gG_okZq3oTTzNMPx_M8kvSfYxOsEI8VOPUUlohgjKEBYFy4a1ZAsXnGSixOX6qmcsIwXNN5Nt758QQmUEtxJ1bRvTGq2CsX1q2_TWdsPhVOlgdHqmTXOU3j2C7ew8Zrr01tkFuGDApzNv-nk6CY9DBz18vL0_mH7oIgNBBUgru4ibnsHtJhut6jzsfdedZHY-ua8us-nNxVV1Ns00JSRkVOUKI6xFw1Xd6IZpwShQXTdC8UJrlOeYIww1bjFwGieK1bkQcdYwVRb5TnIw7l04-7IEH-STXbo-npSEcp7zEjMeU2RMaWe9d9DKhTPPyg0SI7lSKUeVMqqUXyrlEKHjEXqF2rZeG-g1_IDRZcFQKWgZO0RiWvw_XZnwpb6yyz5ENB9RH-P9HNzvH_543icsIpm-</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kugimoto, Daisuke</creator><creator>Kouda, Shingo</creator><creator>Yamaguchi, Masayuki</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210101</creationdate><title>Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer</title><author>Kugimoto, Daisuke ; Kouda, Shingo ; Yamaguchi, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4a3a101c8d7abdcd6c864e4cbd8a75cc0331701eb1f1e745cca6b388701d6a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Chain branching</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copolymers</topic><topic>Deformation</topic><topic>Dispersion hardening</topic><topic>Droplets</topic><topic>Elongated structure</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Ethylene</topic><topic>Ethylene vinyl acetates</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Polylactic acid</topic><topic>Polymer blends</topic><topic>Polymer Science</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Science & Technology</topic><topic>Strain hardening</topic><topic>Technology</topic><topic>Vinyl acetate</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kugimoto, Daisuke</creatorcontrib><creatorcontrib>Kouda, Shingo</creatorcontrib><creatorcontrib>Yamaguchi, Masayuki</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kugimoto, Daisuke</au><au>Kouda, Shingo</au><au>Yamaguchi, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><stitle>J POLYM ENVIRON</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>29</volume><issue>1</issue><spage>121</spage><epage>129</epage><pages>121-129</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>The effect of ethylene–vinyl acetate copolymer (EVA) addition on the rheological properties of poly(lactic acid) (PLA) was studied. EVA exhibited strain-hardening behavior in the transient elongational viscosity due to its long-chain branch structure, whereas PLA did not show any strain-hardening. The blends showed sea-island structure, in which the size of EVA droplets decreased with the vinyl acetate content in EVA. It should be noted that the blends showed strain-hardening behavior even though EVA is not in the continuous phase. During elongational flow, EVA droplets deform to the fibrous shape owing to hydrodynamic force applied by the matrix PLA, and eventually their deformation is greatly reduced as a result of the strain-hardening. Consequently, the blend system behaved like a rigid-fiber dispersion, which are known to show enhanced elongational viscosity. Finally, the processability of a tubular-blown film was improved by the EVA addition because of the strain-hardening.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-020-01856-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2021-01, Vol.29 (1), p.121-129 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_2477379167 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Acetic acid Chain branching Chemistry Chemistry and Materials Science Copolymers Deformation Dispersion hardening Droplets Elongated structure Engineering Engineering, Environmental Environmental Chemistry Environmental Engineering/Biotechnology Ethylene Ethylene vinyl acetates Industrial Chemistry/Chemical Engineering Materials Science Original Paper Physical Sciences Polylactic acid Polymer blends Polymer Science Polymer Sciences Rheological properties Rheology Science & Technology Strain hardening Technology Vinyl acetate Viscosity |
title | Modification of Poly(Lactic Acid) Rheological Properties Using Ethylene–Vinyl Acetate Copolymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T11%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Poly(Lactic%20Acid)%20Rheological%20Properties%20Using%20Ethylene%E2%80%93Vinyl%20Acetate%20Copolymer&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Kugimoto,%20Daisuke&rft.date=2021-01-01&rft.volume=29&rft.issue=1&rft.spage=121&rft.epage=129&rft.pages=121-129&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-020-01856-y&rft_dat=%3Cproquest_cross%3E2477379167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477379167&rft_id=info:pmid/&rfr_iscdi=true |