Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions
This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2021, Vol.23 (1), p.301-314 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 1 |
container_start_page | 301 |
container_title | Journal of material cycles and waste management |
container_volume | 23 |
creator | Ali, Mohamed Mahmoud Ndongo, Mamoudou Yetilmezsoy, Kaan Bahramian, Majid Bilal, Boudy Youm, Issakha Goncaloğlu, Bülent İlhan |
description | This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH
4
/g VS) was greater than that from sheep manure (320.32 mL CH
4
/g VS). The determination coefficients (
R
2
) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the
R
2
values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models. |
doi_str_mv | 10.1007/s10163-020-01130-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477376185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477376185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-487ee6683ca57781a704860ed83a87f399592e52e2d477e900ffd3a9d873b22a3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcTOsqp4SUhsYG25ybh129jBdqj4FP4WN0Fix2I0I_ueOxrdLLsm-JZgzO8CwaRiOaY4x4QwnNOTbEYqQnJBKT9Nc8FEXtQlP88uQthiTGvM-Cz7XvS9VyaoPXIadRA3ygLqvWuHJhpnkbJtKgXerUyDNPgObFTj185YiKYJR3JvPiFE1-xQp-zgIaAhGLtGykejTWOSv4XBjy0enN-F0TlphuBMm97X3h3iBunBjovDZXam1T7A1W-fZ-8P92_Lp_zl9fF5uXjJG1ZWMS8EB6gqwRpVci6I4rgQFYZWMCW4ZnVd1hRKCrQtOIcaY61bpupWcLaiVLF5djP5pqM_hnSE3LrB27RS0kQwXhFRJhWdVI13IXjQsvemU_5LEiyPEcgpApkikGMEkiaITVBIYrsG_2f9D_UDV0eNRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477376185</pqid></control><display><type>article</type><title>Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Ali, Mohamed Mahmoud ; Ndongo, Mamoudou ; Yetilmezsoy, Kaan ; Bahramian, Majid ; Bilal, Boudy ; Youm, Issakha ; Goncaloğlu, Bülent İlhan</creator><creatorcontrib>Ali, Mohamed Mahmoud ; Ndongo, Mamoudou ; Yetilmezsoy, Kaan ; Bahramian, Majid ; Bilal, Boudy ; Youm, Issakha ; Goncaloğlu, Bülent İlhan</creatorcontrib><description>This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH
4
/g VS) was greater than that from sheep manure (320.32 mL CH
4
/g VS). The determination coefficients (
R
2
) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the
R
2
values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-020-01130-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ambient temperature ; Anaerobic digestion ; Artificial neural networks ; Biogas ; Cattle manure ; Civil Engineering ; Comparative analysis ; Composition ; Engineering ; Environmental Management ; Fermentation ; Livestock ; Manures ; Mathematical models ; Methane ; Neural networks ; Original Article ; Sheep ; Sheep manure ; Waste Management/Waste Technology</subject><ispartof>Journal of material cycles and waste management, 2021, Vol.23 (1), p.301-314</ispartof><rights>Springer Japan KK, part of Springer Nature 2020</rights><rights>Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-487ee6683ca57781a704860ed83a87f399592e52e2d477e900ffd3a9d873b22a3</citedby><cites>FETCH-LOGICAL-c356t-487ee6683ca57781a704860ed83a87f399592e52e2d477e900ffd3a9d873b22a3</cites><orcidid>0000-0003-3175-9098 ; 0000-0003-1478-9957 ; 0000-0002-3949-8307 ; 0000-0002-3719-0253 ; 0000-0003-3141-7856 ; 0000-0002-7571-5567 ; 0000-0002-2359-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-020-01130-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-020-01130-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Ali, Mohamed Mahmoud</creatorcontrib><creatorcontrib>Ndongo, Mamoudou</creatorcontrib><creatorcontrib>Yetilmezsoy, Kaan</creatorcontrib><creatorcontrib>Bahramian, Majid</creatorcontrib><creatorcontrib>Bilal, Boudy</creatorcontrib><creatorcontrib>Youm, Issakha</creatorcontrib><creatorcontrib>Goncaloğlu, Bülent İlhan</creatorcontrib><title>Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH
4
/g VS) was greater than that from sheep manure (320.32 mL CH
4
/g VS). The determination coefficients (
R
2
) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the
R
2
values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models.</description><subject>Ambient temperature</subject><subject>Anaerobic digestion</subject><subject>Artificial neural networks</subject><subject>Biogas</subject><subject>Cattle manure</subject><subject>Civil Engineering</subject><subject>Comparative analysis</subject><subject>Composition</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Fermentation</subject><subject>Livestock</subject><subject>Manures</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Sheep</subject><subject>Sheep manure</subject><subject>Waste Management/Waste Technology</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcTOsqp4SUhsYG25ybh129jBdqj4FP4WN0Fix2I0I_ueOxrdLLsm-JZgzO8CwaRiOaY4x4QwnNOTbEYqQnJBKT9Nc8FEXtQlP88uQthiTGvM-Cz7XvS9VyaoPXIadRA3ygLqvWuHJhpnkbJtKgXerUyDNPgObFTj185YiKYJR3JvPiFE1-xQp-zgIaAhGLtGykejTWOSv4XBjy0enN-F0TlphuBMm97X3h3iBunBjovDZXam1T7A1W-fZ-8P92_Lp_zl9fF5uXjJG1ZWMS8EB6gqwRpVci6I4rgQFYZWMCW4ZnVd1hRKCrQtOIcaY61bpupWcLaiVLF5djP5pqM_hnSE3LrB27RS0kQwXhFRJhWdVI13IXjQsvemU_5LEiyPEcgpApkikGMEkiaITVBIYrsG_2f9D_UDV0eNRw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ali, Mohamed Mahmoud</creator><creator>Ndongo, Mamoudou</creator><creator>Yetilmezsoy, Kaan</creator><creator>Bahramian, Majid</creator><creator>Bilal, Boudy</creator><creator>Youm, Issakha</creator><creator>Goncaloğlu, Bülent İlhan</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3175-9098</orcidid><orcidid>https://orcid.org/0000-0003-1478-9957</orcidid><orcidid>https://orcid.org/0000-0002-3949-8307</orcidid><orcidid>https://orcid.org/0000-0002-3719-0253</orcidid><orcidid>https://orcid.org/0000-0003-3141-7856</orcidid><orcidid>https://orcid.org/0000-0002-7571-5567</orcidid><orcidid>https://orcid.org/0000-0002-2359-2905</orcidid></search><sort><creationdate>2021</creationdate><title>Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions</title><author>Ali, Mohamed Mahmoud ; Ndongo, Mamoudou ; Yetilmezsoy, Kaan ; Bahramian, Majid ; Bilal, Boudy ; Youm, Issakha ; Goncaloğlu, Bülent İlhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-487ee6683ca57781a704860ed83a87f399592e52e2d477e900ffd3a9d873b22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Anaerobic digestion</topic><topic>Artificial neural networks</topic><topic>Biogas</topic><topic>Cattle manure</topic><topic>Civil Engineering</topic><topic>Comparative analysis</topic><topic>Composition</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Fermentation</topic><topic>Livestock</topic><topic>Manures</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Sheep</topic><topic>Sheep manure</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Mohamed Mahmoud</creatorcontrib><creatorcontrib>Ndongo, Mamoudou</creatorcontrib><creatorcontrib>Yetilmezsoy, Kaan</creatorcontrib><creatorcontrib>Bahramian, Majid</creatorcontrib><creatorcontrib>Bilal, Boudy</creatorcontrib><creatorcontrib>Youm, Issakha</creatorcontrib><creatorcontrib>Goncaloğlu, Bülent İlhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Mohamed Mahmoud</au><au>Ndongo, Mamoudou</au><au>Yetilmezsoy, Kaan</au><au>Bahramian, Majid</au><au>Bilal, Boudy</au><au>Youm, Issakha</au><au>Goncaloğlu, Bülent İlhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>301</spage><epage>314</epage><pages>301-314</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH
4
/g VS) was greater than that from sheep manure (320.32 mL CH
4
/g VS). The determination coefficients (
R
2
) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the
R
2
values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-020-01130-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3175-9098</orcidid><orcidid>https://orcid.org/0000-0003-1478-9957</orcidid><orcidid>https://orcid.org/0000-0002-3949-8307</orcidid><orcidid>https://orcid.org/0000-0002-3719-0253</orcidid><orcidid>https://orcid.org/0000-0003-3141-7856</orcidid><orcidid>https://orcid.org/0000-0002-7571-5567</orcidid><orcidid>https://orcid.org/0000-0002-2359-2905</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2021, Vol.23 (1), p.301-314 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_journals_2477376185 |
source | Springer Nature - Complete Springer Journals |
subjects | Ambient temperature Anaerobic digestion Artificial neural networks Biogas Cattle manure Civil Engineering Comparative analysis Composition Engineering Environmental Management Fermentation Livestock Manures Mathematical models Methane Neural networks Original Article Sheep Sheep manure Waste Management/Waste Technology |
title | Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artificial neural networks and sinusoidal growth functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Appraisal%20of%20methane%20production%20and%20anaerobic%20fermentation%20kinetics%20of%20livestock%20manures%20using%20artificial%20neural%20networks%20and%20sinusoidal%20growth%20functions&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Ali,%20Mohamed%20Mahmoud&rft.date=2021&rft.volume=23&rft.issue=1&rft.spage=301&rft.epage=314&rft.pages=301-314&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-020-01130-2&rft_dat=%3Cproquest_cross%3E2477376185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477376185&rft_id=info:pmid/&rfr_iscdi=true |