A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions

The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Fluid Mechanics 2017-03, Vol.10 (2), p.667-680
Hauptverfasser: Di Cristo, C., Iervolino, M., Vacca, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 2
container_start_page 667
container_title Journal of Applied Fluid Mechanics
container_volume 10
creator Di Cristo, C.
Iervolino, M.
Vacca, A.
description The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids.
doi_str_mv 10.18869/acadpub.jafm.73.239.26945
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2477274687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b148f10af3a4bfabf7445669637f03a</doaj_id><sourcerecordid>2477274687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3245-6a6e98e1c84e80ee7ac82396367e2d893df73b72c8bda722d4bd69016b9d83323</originalsourceid><addsrcrecordid>eNo9kUFP3DAQhaOqSEXAf7Dac9LE43ic3uiqtCutKCqterTGsb1kFeKt7YD494RdymlGo6f35ukrio9NXTVKye4z9WT3s6l25O8rhIpDV3HZifZdcdogtCVI0b7_v7fIPxQXKQ2mFgIFAHanxe6S3eZI2W2fmA-R3dAieHBsFaYcw8iCZ9eU50gj-xXGsfxLDy6xYWI34dHFckOP7GqcB5tYvoth3t6x9TS6zL6GebIUn16M7JCHMKXz4sTTmNzF6zwr_lx9-736UW5-fl-vLjdlD1y0pSTpOuWaXgmnaueQerUUkyDRcas6sB7BIO-VsYScW2Gs7OpGms4qAA5nxfroawPt9D4O98sfOtCgD4cQt5piHvrR6do0QvmmJg8kjCfjUYhWyiUNfQ20eH06eu1j-De7lPUuzHFa3tdcIHIUUuGi-nJU9TGkFJ1_S21qfUClX1HpF1QaQS-N9AEVPANK0Irp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477274687</pqid></control><display><type>article</type><title>A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Di Cristo, C. ; Iervolino, M. ; Vacca, A.</creator><creatorcontrib>Di Cristo, C. ; Iervolino, M. ; Vacca, A. ; Seconda Universita degli Studi di Napoli ; Università di Cassino e del Lazio Meridionale ; Seconda Università di Napoli</creatorcontrib><description>The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.18869/acadpub.jafm.73.239.26945</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Base flow ; Boundary conditions ; Coalescence ; Coalescing ; Computational fluid dynamics ; Conservation equations ; Deceleration ; Evolution ; Flow stability ; Growth rate ; Natural roll-waves; Power-law fluid; Gradually varying flow; Shock-capturing method ; Passive control ; Power law ; Rheological properties ; Rheology ; Shear thickening (liquids) ; Shear thinning (liquids) ; Stability analysis ; Thickening ; Water waves ; Wave fronts ; Wave interaction ; Wave packets</subject><ispartof>Journal of Applied Fluid Mechanics, 2017-03, Vol.10 (2), p.667-680</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3245-6a6e98e1c84e80ee7ac82396367e2d893df73b72c8bda722d4bd69016b9d83323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Di Cristo, C.</creatorcontrib><creatorcontrib>Iervolino, M.</creatorcontrib><creatorcontrib>Vacca, A.</creatorcontrib><creatorcontrib>Seconda Universita degli Studi di Napoli</creatorcontrib><creatorcontrib>Università di Cassino e del Lazio Meridionale</creatorcontrib><creatorcontrib>Seconda Università di Napoli</creatorcontrib><title>A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions</title><title>Journal of Applied Fluid Mechanics</title><description>The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids.</description><subject>Base flow</subject><subject>Boundary conditions</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Conservation equations</subject><subject>Deceleration</subject><subject>Evolution</subject><subject>Flow stability</subject><subject>Growth rate</subject><subject>Natural roll-waves; Power-law fluid; Gradually varying flow; Shock-capturing method</subject><subject>Passive control</subject><subject>Power law</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear thickening (liquids)</subject><subject>Shear thinning (liquids)</subject><subject>Stability analysis</subject><subject>Thickening</subject><subject>Water waves</subject><subject>Wave fronts</subject><subject>Wave interaction</subject><subject>Wave packets</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUFP3DAQhaOqSEXAf7Dac9LE43ic3uiqtCutKCqterTGsb1kFeKt7YD494RdymlGo6f35ukrio9NXTVKye4z9WT3s6l25O8rhIpDV3HZifZdcdogtCVI0b7_v7fIPxQXKQ2mFgIFAHanxe6S3eZI2W2fmA-R3dAieHBsFaYcw8iCZ9eU50gj-xXGsfxLDy6xYWI34dHFckOP7GqcB5tYvoth3t6x9TS6zL6GebIUn16M7JCHMKXz4sTTmNzF6zwr_lx9-736UW5-fl-vLjdlD1y0pSTpOuWaXgmnaueQerUUkyDRcas6sB7BIO-VsYScW2Gs7OpGms4qAA5nxfroawPt9D4O98sfOtCgD4cQt5piHvrR6do0QvmmJg8kjCfjUYhWyiUNfQ20eH06eu1j-De7lPUuzHFa3tdcIHIUUuGi-nJU9TGkFJ1_S21qfUClX1HpF1QaQS-N9AEVPANK0Irp</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Di Cristo, C.</creator><creator>Iervolino, M.</creator><creator>Vacca, A.</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20170301</creationdate><title>A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions</title><author>Di Cristo, C. ; Iervolino, M. ; Vacca, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3245-6a6e98e1c84e80ee7ac82396367e2d893df73b72c8bda722d4bd69016b9d83323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Base flow</topic><topic>Boundary conditions</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Conservation equations</topic><topic>Deceleration</topic><topic>Evolution</topic><topic>Flow stability</topic><topic>Growth rate</topic><topic>Natural roll-waves; Power-law fluid; Gradually varying flow; Shock-capturing method</topic><topic>Passive control</topic><topic>Power law</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear thickening (liquids)</topic><topic>Shear thinning (liquids)</topic><topic>Stability analysis</topic><topic>Thickening</topic><topic>Water waves</topic><topic>Wave fronts</topic><topic>Wave interaction</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Cristo, C.</creatorcontrib><creatorcontrib>Iervolino, M.</creatorcontrib><creatorcontrib>Vacca, A.</creatorcontrib><creatorcontrib>Seconda Universita degli Studi di Napoli</creatorcontrib><creatorcontrib>Università di Cassino e del Lazio Meridionale</creatorcontrib><creatorcontrib>Seconda Università di Napoli</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Cristo, C.</au><au>Iervolino, M.</au><au>Vacca, A.</au><aucorp>Seconda Universita degli Studi di Napoli</aucorp><aucorp>Università di Cassino e del Lazio Meridionale</aucorp><aucorp>Seconda Università di Napoli</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>10</volume><issue>2</issue><spage>667</spage><epage>680</epage><pages>667-680</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.18869/acadpub.jafm.73.239.26945</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-3572
ispartof Journal of Applied Fluid Mechanics, 2017-03, Vol.10 (2), p.667-680
issn 1735-3572
1735-3645
language eng
recordid cdi_proquest_journals_2477274687
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Base flow
Boundary conditions
Coalescence
Coalescing
Computational fluid dynamics
Conservation equations
Deceleration
Evolution
Flow stability
Growth rate
Natural roll-waves
Power-law fluid
Gradually varying flow
Shock-capturing method
Passive control
Power law
Rheological properties
Rheology
Shear thickening (liquids)
Shear thinning (liquids)
Stability analysis
Thickening
Water waves
Wave fronts
Wave interaction
Wave packets
title A Strategy for Passive Control of Natural Roll-Waves in Power-Law Fluids through Inlet Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Strategy%20for%20Passive%20Control%20of%20Natural%20Roll-Waves%20in%20Power-Law%20Fluids%20through%20Inlet%20Boundary%20Conditions&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Di%20Cristo,%20C.&rft.aucorp=Seconda%20Universita%20degli%20Studi%20di%20Napoli&rft.date=2017-03-01&rft.volume=10&rft.issue=2&rft.spage=667&rft.epage=680&rft.pages=667-680&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.18869/acadpub.jafm.73.239.26945&rft_dat=%3Cproquest_doaj_%3E2477274687%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477274687&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0b148f10af3a4bfabf7445669637f03a&rfr_iscdi=true