Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field

In the present study, flow through two-dimensional microchannel under an axial electric field, transverse electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and momentum equations were solved steadily with respect to the non-slip condition by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Fluid Mechanics 2019-05, Vol.12 (3), p.961-969
Hauptverfasser: Moradmand, A., Saghafian, M., Moghimi Mofrad, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 969
container_issue 3
container_start_page 961
container_title Journal of Applied Fluid Mechanics
container_volume 12
creator Moradmand, A.
Saghafian, M.
Moghimi Mofrad, B.
description In the present study, flow through two-dimensional microchannel under an axial electric field, transverse electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and momentum equations were solved steadily with respect to the non-slip condition by using discrete finite volume method and a numerical code. The results show that in the presence of the axial electric field, applying transverse magnetic field reduces flow velocity. However, when the transverse electric field and axial electric field exist together, applying the transverse magnetic field increases the flow rate to a certain extent and then reduces the flow rate. Hartmann number like this amount of magnetic field is known as critical Hartmann number. Therefore, with the presence of transverse and axial electric fields and transverse magnetic field, the highest possible flow rate is for critical Hartmann number. It was also found that by increasing the pressure gradient within the microchannel, the critical Hartmann number decreases. Moreover, by increasing the transverse electric field, the sensitivity of critical Hartmann number to the pressure gradient decreases and its value tends to a specific number (about 1.5).
doi_str_mv 10.29252/jafm.12.03.28816
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2477272252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d926580aa604cc19e4a43213700311c</doaj_id><sourcerecordid>2477272252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9d4c562af6f72b137581a169217178b9dccaa83f5ba56e6413736b057173f53f3</originalsourceid><addsrcrecordid>eNo9kU1PwzAMhisEEhPsB3CLxLkl32mPaDBAYgIJOEdumq6ZugaSboh_T1iBky379WPLb5ZdEFzQigp6tYF2WxBaYFbQsiTyKJsRxUTOJBfHf7lQ9DSbx-hqzLnijKlqlvW3vTVj8D5u_egMeg42xl2w-U1wezugZe8_0dgFv1t3CNBL70a0cib4fNHBMNgefbqxQxMlzcPQoBWsB_sDew0wxL0N0aKls31znp200Ec7_41n2dvy9nVxnz8-3T0srh9zw0o65lXDjZAUWtkqWhOmREmAyIoSRVRZV40xACVrRQ1CWsmTgskai9RNRdays-xh4jYeNvo9uC2EL-3B6UPBh7WGkA7srcZNRaUoMYDE3BhSWQ6c0YTEmBFiEutyYr0H_7GzcdQbvwtDOl9TrhRVNBmQVGRSpc_EGGz7v5VgffBI_3ikCdWY6YNH7Bv6y4QF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477272252</pqid></control><display><type>article</type><title>Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moradmand, A. ; Saghafian, M. ; Moghimi Mofrad, B.</creator><creatorcontrib>Moradmand, A. ; Saghafian, M. ; Moghimi Mofrad, B. ; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran</creatorcontrib><description>In the present study, flow through two-dimensional microchannel under an axial electric field, transverse electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and momentum equations were solved steadily with respect to the non-slip condition by using discrete finite volume method and a numerical code. The results show that in the presence of the axial electric field, applying transverse magnetic field reduces flow velocity. However, when the transverse electric field and axial electric field exist together, applying the transverse magnetic field increases the flow rate to a certain extent and then reduces the flow rate. Hartmann number like this amount of magnetic field is known as critical Hartmann number. Therefore, with the presence of transverse and axial electric fields and transverse magnetic field, the highest possible flow rate is for critical Hartmann number. It was also found that by increasing the pressure gradient within the microchannel, the critical Hartmann number decreases. Moreover, by increasing the transverse electric field, the sensitivity of critical Hartmann number to the pressure gradient decreases and its value tends to a specific number (about 1.5).</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.29252/jafm.12.03.28816</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Continuity (mathematics) ; Electric fields ; Finite volume method ; Flow rates ; Flow velocity ; Hartmann number ; Magnetic fields ; Magnetism ; Microchannel; Electro-osmotic flow; Electro magneto hydro dynamic; Transverse electrical field; Critical hartmann number ; Microchannels ; Pressure ; Two dimensional flow</subject><ispartof>Journal of Applied Fluid Mechanics, 2019-05, Vol.12 (3), p.961-969</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9d4c562af6f72b137581a169217178b9dccaa83f5ba56e6413736b057173f53f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Moradmand, A.</creatorcontrib><creatorcontrib>Saghafian, M.</creatorcontrib><creatorcontrib>Moghimi Mofrad, B.</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran</creatorcontrib><title>Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field</title><title>Journal of Applied Fluid Mechanics</title><description>In the present study, flow through two-dimensional microchannel under an axial electric field, transverse electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and momentum equations were solved steadily with respect to the non-slip condition by using discrete finite volume method and a numerical code. The results show that in the presence of the axial electric field, applying transverse magnetic field reduces flow velocity. However, when the transverse electric field and axial electric field exist together, applying the transverse magnetic field increases the flow rate to a certain extent and then reduces the flow rate. Hartmann number like this amount of magnetic field is known as critical Hartmann number. Therefore, with the presence of transverse and axial electric fields and transverse magnetic field, the highest possible flow rate is for critical Hartmann number. It was also found that by increasing the pressure gradient within the microchannel, the critical Hartmann number decreases. Moreover, by increasing the transverse electric field, the sensitivity of critical Hartmann number to the pressure gradient decreases and its value tends to a specific number (about 1.5).</description><subject>Continuity (mathematics)</subject><subject>Electric fields</subject><subject>Finite volume method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Hartmann number</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Microchannel; Electro-osmotic flow; Electro magneto hydro dynamic; Transverse electrical field; Critical hartmann number</subject><subject>Microchannels</subject><subject>Pressure</subject><subject>Two dimensional flow</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1PwzAMhisEEhPsB3CLxLkl32mPaDBAYgIJOEdumq6ZugaSboh_T1iBky379WPLb5ZdEFzQigp6tYF2WxBaYFbQsiTyKJsRxUTOJBfHf7lQ9DSbx-hqzLnijKlqlvW3vTVj8D5u_egMeg42xl2w-U1wezugZe8_0dgFv1t3CNBL70a0cib4fNHBMNgefbqxQxMlzcPQoBWsB_sDew0wxL0N0aKls31znp200Ec7_41n2dvy9nVxnz8-3T0srh9zw0o65lXDjZAUWtkqWhOmREmAyIoSRVRZV40xACVrRQ1CWsmTgskai9RNRdays-xh4jYeNvo9uC2EL-3B6UPBh7WGkA7srcZNRaUoMYDE3BhSWQ6c0YTEmBFiEutyYr0H_7GzcdQbvwtDOl9TrhRVNBmQVGRSpc_EGGz7v5VgffBI_3ikCdWY6YNH7Bv6y4QF</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Moradmand, A.</creator><creator>Saghafian, M.</creator><creator>Moghimi Mofrad, B.</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20190501</creationdate><title>Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field</title><author>Moradmand, A. ; Saghafian, M. ; Moghimi Mofrad, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9d4c562af6f72b137581a169217178b9dccaa83f5ba56e6413736b057173f53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Continuity (mathematics)</topic><topic>Electric fields</topic><topic>Finite volume method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Hartmann number</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Microchannel; Electro-osmotic flow; Electro magneto hydro dynamic; Transverse electrical field; Critical hartmann number</topic><topic>Microchannels</topic><topic>Pressure</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moradmand, A.</creatorcontrib><creatorcontrib>Saghafian, M.</creatorcontrib><creatorcontrib>Moghimi Mofrad, B.</creatorcontrib><creatorcontrib>Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradmand, A.</au><au>Saghafian, M.</au><au>Moghimi Mofrad, B.</au><aucorp>Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>12</volume><issue>3</issue><spage>961</spage><epage>969</epage><pages>961-969</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>In the present study, flow through two-dimensional microchannel under an axial electric field, transverse electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and momentum equations were solved steadily with respect to the non-slip condition by using discrete finite volume method and a numerical code. The results show that in the presence of the axial electric field, applying transverse magnetic field reduces flow velocity. However, when the transverse electric field and axial electric field exist together, applying the transverse magnetic field increases the flow rate to a certain extent and then reduces the flow rate. Hartmann number like this amount of magnetic field is known as critical Hartmann number. Therefore, with the presence of transverse and axial electric fields and transverse magnetic field, the highest possible flow rate is for critical Hartmann number. It was also found that by increasing the pressure gradient within the microchannel, the critical Hartmann number decreases. Moreover, by increasing the transverse electric field, the sensitivity of critical Hartmann number to the pressure gradient decreases and its value tends to a specific number (about 1.5).</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.29252/jafm.12.03.28816</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-3572
ispartof Journal of Applied Fluid Mechanics, 2019-05, Vol.12 (3), p.961-969
issn 1735-3572
1735-3645
language eng
recordid cdi_proquest_journals_2477272252
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Continuity (mathematics)
Electric fields
Finite volume method
Flow rates
Flow velocity
Hartmann number
Magnetic fields
Magnetism
Microchannel
Electro-osmotic flow
Electro magneto hydro dynamic
Transverse electrical field
Critical hartmann number
Microchannels
Pressure
Two dimensional flow
title Electroosmotic Pressure-Driven Flow through a Slit Micro-Channel with Electric and Magnetic Transverse Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20Pressure-Driven%20Flow%20through%20a%20Slit%20Micro-Channel%20with%20Electric%20and%20Magnetic%20Transverse%20Field&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Moradmand,%20A.&rft.aucorp=Department%20of%20Mechanical%20Engineering,%20Isfahan%20University%20of%20Technology,%20Isfahan,%20Iran&rft.date=2019-05-01&rft.volume=12&rft.issue=3&rft.spage=961&rft.epage=969&rft.pages=961-969&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.29252/jafm.12.03.28816&rft_dat=%3Cproquest_doaj_%3E2477272252%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477272252&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0d926580aa604cc19e4a43213700311c&rfr_iscdi=true