Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium
A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Fluid Mechanics 2018-11, Vol.11 (6), p.1717-1726 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1726 |
---|---|
container_issue | 6 |
container_start_page | 1717 |
container_title | Journal of Applied Fluid Mechanics |
container_volume | 11 |
creator | Narsimhulu, D. Ramu, A. Kumar Satpathi, D. |
description | A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically. |
doi_str_mv | 10.29252/jafm.11.06.28566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2477272222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4cdae316e1cd47f2b43394c764118dd3</doaj_id><sourcerecordid>2477272222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIVNAP4GaJc0q8dmzniCoelQocUomj5dib1iWNi5NW6t-TtsBpZ3dHs6OdJLmj2QQKyOFhberNhNJJJiagciEukhGVLE-Z4PnlH84lXCfjrvNVxrnkjMlilKxLbOq09BvfmEjeQu9DS0JNyj6Gdkmmod1jXPojPDS-ddFb0xDTOlJuV3juylWwX-TT7LEjviXvoU1nDo-LHpuTLDq_29wmV7VpOhz_1ptk8fy0mL6m84-X2fRxnloopEjRIkCmJBR1AUwIySQYCaAAhagUh7qCvFDKUaAVcJZRSYUyzgnMlcrYTTI7y7pg1nob_cbEgw7G69MgxKU2sfe2Qc2tM8ioQGodlzVUw1MKbqXglCrn2KB1f9baxvC9w67X67CL7eBeA5cSBlsAA4ueWTaGrotY_1-lmT4FpI8BaUp1JvQpIPYDyheCCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477272222</pqid></control><display><type>article</type><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D.</creator><creatorcontrib>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D. ; Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><description>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.29252/jafm.11.06.28566</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Compressible flow ; Computational fluid dynamics ; Convergence ; Cylindrical waves ; Differential equations ; Equations of state ; Finite difference method ; Fluid flow ; Gruneisen parameter ; Hydrodynamics ; Ideal gas ; Monochromatic radiation ; Ordinary differential equations ; Self-similarity ; Shock waves ; Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution ; Similarity ; Spherical waves</subject><ispartof>Journal of Applied Fluid Mechanics, 2018-11, Vol.11 (6), p.1717-1726</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Narsimhulu, D.</creatorcontrib><creatorcontrib>Ramu, A.</creatorcontrib><creatorcontrib>Kumar Satpathi, D.</creatorcontrib><creatorcontrib>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><title>Journal of Applied Fluid Mechanics</title><description>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</description><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Cylindrical waves</subject><subject>Differential equations</subject><subject>Equations of state</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Gruneisen parameter</subject><subject>Hydrodynamics</subject><subject>Ideal gas</subject><subject>Monochromatic radiation</subject><subject>Ordinary differential equations</subject><subject>Self-similarity</subject><subject>Shock waves</subject><subject>Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution</subject><subject>Similarity</subject><subject>Spherical waves</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNo9UctOwzAQjBBIVNAP4GaJc0q8dmzniCoelQocUomj5dib1iWNi5NW6t-TtsBpZ3dHs6OdJLmj2QQKyOFhberNhNJJJiagciEukhGVLE-Z4PnlH84lXCfjrvNVxrnkjMlilKxLbOq09BvfmEjeQu9DS0JNyj6Gdkmmod1jXPojPDS-ddFb0xDTOlJuV3juylWwX-TT7LEjviXvoU1nDo-LHpuTLDq_29wmV7VpOhz_1ptk8fy0mL6m84-X2fRxnloopEjRIkCmJBR1AUwIySQYCaAAhagUh7qCvFDKUaAVcJZRSYUyzgnMlcrYTTI7y7pg1nob_cbEgw7G69MgxKU2sfe2Qc2tM8ioQGodlzVUw1MKbqXglCrn2KB1f9baxvC9w67X67CL7eBeA5cSBlsAA4ueWTaGrotY_1-lmT4FpI8BaUp1JvQpIPYDyheCCA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Narsimhulu, D.</creator><creator>Ramu, A.</creator><creator>Kumar Satpathi, D.</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><author>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Cylindrical waves</topic><topic>Differential equations</topic><topic>Equations of state</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Gruneisen parameter</topic><topic>Hydrodynamics</topic><topic>Ideal gas</topic><topic>Monochromatic radiation</topic><topic>Ordinary differential equations</topic><topic>Self-similarity</topic><topic>Shock waves</topic><topic>Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution</topic><topic>Similarity</topic><topic>Spherical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narsimhulu, D.</creatorcontrib><creatorcontrib>Ramu, A.</creatorcontrib><creatorcontrib>Kumar Satpathi, D.</creatorcontrib><creatorcontrib>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narsimhulu, D.</au><au>Ramu, A.</au><au>Kumar Satpathi, D.</au><aucorp>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>11</volume><issue>6</issue><spage>1717</spage><epage>1726</epage><pages>1717-1726</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.29252/jafm.11.06.28566</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-3572 |
ispartof | Journal of Applied Fluid Mechanics, 2018-11, Vol.11 (6), p.1717-1726 |
issn | 1735-3572 1735-3645 |
language | eng |
recordid | cdi_proquest_journals_2477272222 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Compressible flow Computational fluid dynamics Convergence Cylindrical waves Differential equations Equations of state Finite difference method Fluid flow Gruneisen parameter Hydrodynamics Ideal gas Monochromatic radiation Ordinary differential equations Self-similarity Shock waves Shock waves Radiation hydrodynamics Finite difference methods Rankine-Hugoniot jump relations Mie-Gruneisen EOS Numerical solution Similarity Spherical waves |
title | Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Similar%20Motion%20of%20Strong%20Converging%20Cylindrical%20and%20Spherical%20Shock%20Waves%20in%20Non-Ideal%20Stellar%20Medium&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Narsimhulu,%20D.&rft.aucorp=Department%20of%20Mathematics,%20Birla%20Institute%20of%20Technology%20and%20Science%20%E2%80%93%20Pilani,%20Hyderabad%20Campus,%20Shameerpet,%20Hyderabad,Telangana,%20500078,%20India&rft.date=2018-11-01&rft.volume=11&rft.issue=6&rft.spage=1717&rft.epage=1726&rft.pages=1717-1726&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.29252/jafm.11.06.28566&rft_dat=%3Cproquest_doaj_%3E2477272222%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477272222&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4cdae316e1cd47f2b43394c764118dd3&rfr_iscdi=true |