Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium

A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Fluid Mechanics 2018-11, Vol.11 (6), p.1717-1726
Hauptverfasser: Narsimhulu, D., Ramu, A., Kumar Satpathi, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 6
container_start_page 1717
container_title Journal of Applied Fluid Mechanics
container_volume 11
creator Narsimhulu, D.
Ramu, A.
Kumar Satpathi, D.
description A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.
doi_str_mv 10.29252/jafm.11.06.28566
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2477272222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4cdae316e1cd47f2b43394c764118dd3</doaj_id><sourcerecordid>2477272222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIVNAP4GaJc0q8dmzniCoelQocUomj5dib1iWNi5NW6t-TtsBpZ3dHs6OdJLmj2QQKyOFhberNhNJJJiagciEukhGVLE-Z4PnlH84lXCfjrvNVxrnkjMlilKxLbOq09BvfmEjeQu9DS0JNyj6Gdkmmod1jXPojPDS-ddFb0xDTOlJuV3juylWwX-TT7LEjviXvoU1nDo-LHpuTLDq_29wmV7VpOhz_1ptk8fy0mL6m84-X2fRxnloopEjRIkCmJBR1AUwIySQYCaAAhagUh7qCvFDKUaAVcJZRSYUyzgnMlcrYTTI7y7pg1nob_cbEgw7G69MgxKU2sfe2Qc2tM8ioQGodlzVUw1MKbqXglCrn2KB1f9baxvC9w67X67CL7eBeA5cSBlsAA4ueWTaGrotY_1-lmT4FpI8BaUp1JvQpIPYDyheCCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477272222</pqid></control><display><type>article</type><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D.</creator><creatorcontrib>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D. ; Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><description>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.29252/jafm.11.06.28566</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Compressible flow ; Computational fluid dynamics ; Convergence ; Cylindrical waves ; Differential equations ; Equations of state ; Finite difference method ; Fluid flow ; Gruneisen parameter ; Hydrodynamics ; Ideal gas ; Monochromatic radiation ; Ordinary differential equations ; Self-similarity ; Shock waves ; Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution ; Similarity ; Spherical waves</subject><ispartof>Journal of Applied Fluid Mechanics, 2018-11, Vol.11 (6), p.1717-1726</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Narsimhulu, D.</creatorcontrib><creatorcontrib>Ramu, A.</creatorcontrib><creatorcontrib>Kumar Satpathi, D.</creatorcontrib><creatorcontrib>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><title>Journal of Applied Fluid Mechanics</title><description>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</description><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Cylindrical waves</subject><subject>Differential equations</subject><subject>Equations of state</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Gruneisen parameter</subject><subject>Hydrodynamics</subject><subject>Ideal gas</subject><subject>Monochromatic radiation</subject><subject>Ordinary differential equations</subject><subject>Self-similarity</subject><subject>Shock waves</subject><subject>Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution</subject><subject>Similarity</subject><subject>Spherical waves</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNo9UctOwzAQjBBIVNAP4GaJc0q8dmzniCoelQocUomj5dib1iWNi5NW6t-TtsBpZ3dHs6OdJLmj2QQKyOFhberNhNJJJiagciEukhGVLE-Z4PnlH84lXCfjrvNVxrnkjMlilKxLbOq09BvfmEjeQu9DS0JNyj6Gdkmmod1jXPojPDS-ddFb0xDTOlJuV3juylWwX-TT7LEjviXvoU1nDo-LHpuTLDq_29wmV7VpOhz_1ptk8fy0mL6m84-X2fRxnloopEjRIkCmJBR1AUwIySQYCaAAhagUh7qCvFDKUaAVcJZRSYUyzgnMlcrYTTI7y7pg1nob_cbEgw7G69MgxKU2sfe2Qc2tM8ioQGodlzVUw1MKbqXglCrn2KB1f9baxvC9w67X67CL7eBeA5cSBlsAA4ueWTaGrotY_1-lmT4FpI8BaUp1JvQpIPYDyheCCA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Narsimhulu, D.</creator><creator>Ramu, A.</creator><creator>Kumar Satpathi, D.</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</title><author>Narsimhulu, D. ; Ramu, A. ; Kumar Satpathi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-ece2208729f923667372a72282e66b842fb25988d121b243017168add6e58803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Cylindrical waves</topic><topic>Differential equations</topic><topic>Equations of state</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Gruneisen parameter</topic><topic>Hydrodynamics</topic><topic>Ideal gas</topic><topic>Monochromatic radiation</topic><topic>Ordinary differential equations</topic><topic>Self-similarity</topic><topic>Shock waves</topic><topic>Shock waves; Radiation hydrodynamics; Finite difference methods; Rankine-Hugoniot jump relations; Mie-Gruneisen EOS; Numerical solution</topic><topic>Similarity</topic><topic>Spherical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narsimhulu, D.</creatorcontrib><creatorcontrib>Ramu, A.</creatorcontrib><creatorcontrib>Kumar Satpathi, D.</creatorcontrib><creatorcontrib>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narsimhulu, D.</au><au>Ramu, A.</au><au>Kumar Satpathi, D.</au><aucorp>Department of Mathematics, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Shameerpet, Hyderabad,Telangana, 500078, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>11</volume><issue>6</issue><spage>1717</spage><epage>1726</epage><pages>1717-1726</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>A theoretical model for strong converging cylindrical and spherical shock waves in non-ideal gas characterized by the equation of state (EOS) of the Mie-Gruneisen type is investigated. The governing equations of unsteady one dimensional compressible flow including monochromatic radiation in Eulerian hydrodynamics are considered. These equations are reduced to a system of ordinary differential equations (ODEs) using similarity transformations. Shock is assumed to be strong and propagating into a medium according to a power law. In the present work, two different equations of state (EOS) of Mie-Gruneisen type have been considered and the cylindrical and spherical cases are worked out in detail. The complete set of governing equations is formulated as finite difference problem and solved numerically using MATLAB. The numerical technique applied in this paper provides a global solution to the problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is observed that increase in measure of shock strength β(ρ/ρ_0 ) has effect on the shock front. The velocity and pressure behind the shock front increases quickly in the presence of the monochromatic radiation and decreases gradually. A comparison between the results obtained for non-ideal and perfect gas in the presence of monochromatic radiation has been illustrated graphically.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.29252/jafm.11.06.28566</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-3572
ispartof Journal of Applied Fluid Mechanics, 2018-11, Vol.11 (6), p.1717-1726
issn 1735-3572
1735-3645
language eng
recordid cdi_proquest_journals_2477272222
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Compressible flow
Computational fluid dynamics
Convergence
Cylindrical waves
Differential equations
Equations of state
Finite difference method
Fluid flow
Gruneisen parameter
Hydrodynamics
Ideal gas
Monochromatic radiation
Ordinary differential equations
Self-similarity
Shock waves
Shock waves
Radiation hydrodynamics
Finite difference methods
Rankine-Hugoniot jump relations
Mie-Gruneisen EOS
Numerical solution
Similarity
Spherical waves
title Self-Similar Motion of Strong Converging Cylindrical and Spherical Shock Waves in Non-Ideal Stellar Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Similar%20Motion%20of%20Strong%20Converging%20Cylindrical%20and%20Spherical%20Shock%20Waves%20in%20Non-Ideal%20Stellar%20Medium&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Narsimhulu,%20D.&rft.aucorp=Department%20of%20Mathematics,%20Birla%20Institute%20of%20Technology%20and%20Science%20%E2%80%93%20Pilani,%20Hyderabad%20Campus,%20Shameerpet,%20Hyderabad,Telangana,%20500078,%20India&rft.date=2018-11-01&rft.volume=11&rft.issue=6&rft.spage=1717&rft.epage=1726&rft.pages=1717-1726&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.29252/jafm.11.06.28566&rft_dat=%3Cproquest_doaj_%3E2477272222%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477272222&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4cdae316e1cd47f2b43394c764118dd3&rfr_iscdi=true