Performance analysis of an integrated cooling system consisted of earth-to-air heat exchanger (EAHE) and water spray channel

This study evaluates the cooling performance of a new hybrid system composing of an earth-to-air heat exchanger (EAHE) and a water spray channel to provide thermal comfort in Tehran, Iran. The inlet air temperature passing through the EAHE dissipates its heat to the surrounding soil and become sligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021, Vol.143 (1), p.473-483
Hauptverfasser: Ahmadi, Sadegh, Irandoost Shahrestani, Misagh, Sayadian, Shahide, Maerefat, Mehdi, Haghighi Poshtiri, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluates the cooling performance of a new hybrid system composing of an earth-to-air heat exchanger (EAHE) and a water spray channel to provide thermal comfort in Tehran, Iran. The inlet air temperature passing through the EAHE dissipates its heat to the surrounding soil and become slightly colder. To reach thermal comfort, the pre-cooled air flows upward through a channel spraying water downward and enters the living space. Considering the evaporative thermal comfort zone, the results showed that this system can meet comfort conditions for summer season Tehran. Moreover, according to the results, the cooling effectiveness of the proposed hybrid system is more than 100%, which means that the integrated system is capable of decreasing the air dry-bulb temperature below the inlet ambient wet-bulb temperature. Employing ground as a reliable source of alternative energy, the proposed cooling system can be considered an eco-friendly and energy-efficient system. Therefore, the introduced cooling system can be utilized as an alternative to conventional evaporative coolers or mechanical vapor compression systems while it can be considered an eco-friendly and energy-efficient system.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-020-09268-9