An Online AM Quality Estimation Architecture From Pool to Layer

Quality control is the key for the widespread adoption of metal additive manufacturing (AM). However, online quality estimation is challenging because high-frequency stream data derived from in situ metrology have to be processed in a timely manner to figure out the complicated interactions among ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2021-01, Vol.18 (1), p.269-281
Hauptverfasser: Yang, Haw-Ching, Huang, Chih-Hung, Adnan, Muhammad, Hsu, Chih-Hua, Lin, Chun-Hui, Cheng, Fan-Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 1
container_start_page 269
container_title IEEE transactions on automation science and engineering
container_volume 18
creator Yang, Haw-Ching
Huang, Chih-Hung
Adnan, Muhammad
Hsu, Chih-Hua
Lin, Chun-Hui
Cheng, Fan-Tien
description Quality control is the key for the widespread adoption of metal additive manufacturing (AM). However, online quality estimation is challenging because high-frequency stream data derived from in situ metrology have to be processed in a timely manner to figure out the complicated interactions among material, machine, and part. To tackle such issue, this article proposes an intelligent AM metrology (IAMM) architecture to decouple and evaluate quality variations caused by material properties, machine issues, and process parameters when building an AM part. The IAMM architecture can also estimate the online layer-to-layer quality (e.g., roughness and density of an AM part) by applying the robust parameters derived from the uniform design (UD) method via the enhanced automatic virtual metrology technology in a parallel computing environment, as soon as the microfeatures of melt-pools and the macrofeatures of each layer are extracted. In addition, the associated indices and features in the IAMM architecture can also be used to evaluate the defects caused by machine issues in the given process parameters. The results of case studies validate the applicability of the IAMM architecture and show that the proposed estimation models are prospective for future closed-loop control in an AM process. Note to Practitioners -The proposed intelligent AM metrology (IAMM) architecture can be implemented modularly in a metal additive manufacturing (AM) machine that possesses the capability of estimating the coating and printing qualities of the AM process by extracting features from the optical data of the melt pools and chamber layer by layer. The estimated indices and qualities can be derived online using parallel computation to timely diagnose the machine issues and control the process of the next layer. Hence, when an AM machine is equipped with the IAMM architecture, it can efficiently manufacture a 3-D part with reduced defects in real time.
doi_str_mv 10.1109/TASE.2020.3012622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2477251615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9164998</ieee_id><sourcerecordid>2477251615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c111ab19840f4ad749c21c6921992eb021ca08d956495ec30eb381676e3078cf3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPO-ayZ_d5CRLaVWoVLGeQ5pmcct2U5Psod_eXVo8zQy8N_Pmh9A9kByAqKd19TXPKaEkZwRoQekFmoAQMmOlZJdjz0UmlBDX6CbGHSGUS0Um6Lnq8Kprm87h6h1_9qZt0hHPY2r2JjW-w1WwP01yNvXB4UXwe_zhfYuTx0tzdOEWXdWmje7uXKfoezFfz16z5erlbVYtM0sVS5kFALMBJTmpudmWXFkKtlAUlKJuQ4bBELlVouBKOMuI2zAJRVk4RkppazZFj6e9h-B_exeT3vk-dMNJTXlZUgEFiEEFJ5UNPsbgan0IwyPhqIHokZMeOemRkz5zGjwPJ0_jnPvXKxiSKMn-AJWdYWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477251615</pqid></control><display><type>article</type><title>An Online AM Quality Estimation Architecture From Pool to Layer</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Haw-Ching ; Huang, Chih-Hung ; Adnan, Muhammad ; Hsu, Chih-Hua ; Lin, Chun-Hui ; Cheng, Fan-Tien</creator><creatorcontrib>Yang, Haw-Ching ; Huang, Chih-Hung ; Adnan, Muhammad ; Hsu, Chih-Hua ; Lin, Chun-Hui ; Cheng, Fan-Tien</creatorcontrib><description>Quality control is the key for the widespread adoption of metal additive manufacturing (AM). However, online quality estimation is challenging because high-frequency stream data derived from in situ metrology have to be processed in a timely manner to figure out the complicated interactions among material, machine, and part. To tackle such issue, this article proposes an intelligent AM metrology (IAMM) architecture to decouple and evaluate quality variations caused by material properties, machine issues, and process parameters when building an AM part. The IAMM architecture can also estimate the online layer-to-layer quality (e.g., roughness and density of an AM part) by applying the robust parameters derived from the uniform design (UD) method via the enhanced automatic virtual metrology technology in a parallel computing environment, as soon as the microfeatures of melt-pools and the macrofeatures of each layer are extracted. In addition, the associated indices and features in the IAMM architecture can also be used to evaluate the defects caused by machine issues in the given process parameters. The results of case studies validate the applicability of the IAMM architecture and show that the proposed estimation models are prospective for future closed-loop control in an AM process. Note to Practitioners -The proposed intelligent AM metrology (IAMM) architecture can be implemented modularly in a metal additive manufacturing (AM) machine that possesses the capability of estimating the coating and printing qualities of the AM process by extracting features from the optical data of the melt pools and chamber layer by layer. The estimated indices and qualities can be derived online using parallel computation to timely diagnose the machine issues and control the process of the next layer. Hence, when an AM machine is equipped with the IAMM architecture, it can efficiently manufacture a 3-D part with reduced defects in real time.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2020.3012622</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in situ metrology ; Additive manufacturing ; Automatic virtual metrology (AVM) ; Buildings ; Computer architecture ; Defects ; Estimation ; Feature extraction ; intelligent AM metrology (IAMM) architecture ; Material properties ; Mechanical factors ; Melt pools ; melt-pool ; metal additive manufacturing ; Metals ; Metrology ; Monitoring ; Parallel processing ; Parameter robustness ; Process parameters ; Quality control</subject><ispartof>IEEE transactions on automation science and engineering, 2021-01, Vol.18 (1), p.269-281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c111ab19840f4ad749c21c6921992eb021ca08d956495ec30eb381676e3078cf3</citedby><cites>FETCH-LOGICAL-c293t-c111ab19840f4ad749c21c6921992eb021ca08d956495ec30eb381676e3078cf3</cites><orcidid>0000-0001-8201-223X ; 0000-0002-9483-326X ; 0000-0001-8652-2907 ; 0000-0002-8175-436X ; 0000-0001-6527-4879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9164998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9164998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Haw-Ching</creatorcontrib><creatorcontrib>Huang, Chih-Hung</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Hsu, Chih-Hua</creatorcontrib><creatorcontrib>Lin, Chun-Hui</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><title>An Online AM Quality Estimation Architecture From Pool to Layer</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Quality control is the key for the widespread adoption of metal additive manufacturing (AM). However, online quality estimation is challenging because high-frequency stream data derived from in situ metrology have to be processed in a timely manner to figure out the complicated interactions among material, machine, and part. To tackle such issue, this article proposes an intelligent AM metrology (IAMM) architecture to decouple and evaluate quality variations caused by material properties, machine issues, and process parameters when building an AM part. The IAMM architecture can also estimate the online layer-to-layer quality (e.g., roughness and density of an AM part) by applying the robust parameters derived from the uniform design (UD) method via the enhanced automatic virtual metrology technology in a parallel computing environment, as soon as the microfeatures of melt-pools and the macrofeatures of each layer are extracted. In addition, the associated indices and features in the IAMM architecture can also be used to evaluate the defects caused by machine issues in the given process parameters. The results of case studies validate the applicability of the IAMM architecture and show that the proposed estimation models are prospective for future closed-loop control in an AM process. Note to Practitioners -The proposed intelligent AM metrology (IAMM) architecture can be implemented modularly in a metal additive manufacturing (AM) machine that possesses the capability of estimating the coating and printing qualities of the AM process by extracting features from the optical data of the melt pools and chamber layer by layer. The estimated indices and qualities can be derived online using parallel computation to timely diagnose the machine issues and control the process of the next layer. Hence, when an AM machine is equipped with the IAMM architecture, it can efficiently manufacture a 3-D part with reduced defects in real time.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in situ metrology</subject><subject>Additive manufacturing</subject><subject>Automatic virtual metrology (AVM)</subject><subject>Buildings</subject><subject>Computer architecture</subject><subject>Defects</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>intelligent AM metrology (IAMM) architecture</subject><subject>Material properties</subject><subject>Mechanical factors</subject><subject>Melt pools</subject><subject>melt-pool</subject><subject>metal additive manufacturing</subject><subject>Metals</subject><subject>Metrology</subject><subject>Monitoring</subject><subject>Parallel processing</subject><subject>Parameter robustness</subject><subject>Process parameters</subject><subject>Quality control</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPO-ayZ_d5CRLaVWoVLGeQ5pmcct2U5Psod_eXVo8zQy8N_Pmh9A9kByAqKd19TXPKaEkZwRoQekFmoAQMmOlZJdjz0UmlBDX6CbGHSGUS0Um6Lnq8Kprm87h6h1_9qZt0hHPY2r2JjW-w1WwP01yNvXB4UXwe_zhfYuTx0tzdOEWXdWmje7uXKfoezFfz16z5erlbVYtM0sVS5kFALMBJTmpudmWXFkKtlAUlKJuQ4bBELlVouBKOMuI2zAJRVk4RkppazZFj6e9h-B_exeT3vk-dMNJTXlZUgEFiEEFJ5UNPsbgan0IwyPhqIHokZMeOemRkz5zGjwPJ0_jnPvXKxiSKMn-AJWdYWk</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Yang, Haw-Ching</creator><creator>Huang, Chih-Hung</creator><creator>Adnan, Muhammad</creator><creator>Hsu, Chih-Hua</creator><creator>Lin, Chun-Hui</creator><creator>Cheng, Fan-Tien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-9483-326X</orcidid><orcidid>https://orcid.org/0000-0001-8652-2907</orcidid><orcidid>https://orcid.org/0000-0002-8175-436X</orcidid><orcidid>https://orcid.org/0000-0001-6527-4879</orcidid></search><sort><creationdate>202101</creationdate><title>An Online AM Quality Estimation Architecture From Pool to Layer</title><author>Yang, Haw-Ching ; Huang, Chih-Hung ; Adnan, Muhammad ; Hsu, Chih-Hua ; Lin, Chun-Hui ; Cheng, Fan-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c111ab19840f4ad749c21c6921992eb021ca08d956495ec30eb381676e3078cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in situ metrology</topic><topic>Additive manufacturing</topic><topic>Automatic virtual metrology (AVM)</topic><topic>Buildings</topic><topic>Computer architecture</topic><topic>Defects</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>intelligent AM metrology (IAMM) architecture</topic><topic>Material properties</topic><topic>Mechanical factors</topic><topic>Melt pools</topic><topic>melt-pool</topic><topic>metal additive manufacturing</topic><topic>Metals</topic><topic>Metrology</topic><topic>Monitoring</topic><topic>Parallel processing</topic><topic>Parameter robustness</topic><topic>Process parameters</topic><topic>Quality control</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haw-Ching</creatorcontrib><creatorcontrib>Huang, Chih-Hung</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Hsu, Chih-Hua</creatorcontrib><creatorcontrib>Lin, Chun-Hui</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Haw-Ching</au><au>Huang, Chih-Hung</au><au>Adnan, Muhammad</au><au>Hsu, Chih-Hua</au><au>Lin, Chun-Hui</au><au>Cheng, Fan-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Online AM Quality Estimation Architecture From Pool to Layer</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2021-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>269</spage><epage>281</epage><pages>269-281</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Quality control is the key for the widespread adoption of metal additive manufacturing (AM). However, online quality estimation is challenging because high-frequency stream data derived from in situ metrology have to be processed in a timely manner to figure out the complicated interactions among material, machine, and part. To tackle such issue, this article proposes an intelligent AM metrology (IAMM) architecture to decouple and evaluate quality variations caused by material properties, machine issues, and process parameters when building an AM part. The IAMM architecture can also estimate the online layer-to-layer quality (e.g., roughness and density of an AM part) by applying the robust parameters derived from the uniform design (UD) method via the enhanced automatic virtual metrology technology in a parallel computing environment, as soon as the microfeatures of melt-pools and the macrofeatures of each layer are extracted. In addition, the associated indices and features in the IAMM architecture can also be used to evaluate the defects caused by machine issues in the given process parameters. The results of case studies validate the applicability of the IAMM architecture and show that the proposed estimation models are prospective for future closed-loop control in an AM process. Note to Practitioners -The proposed intelligent AM metrology (IAMM) architecture can be implemented modularly in a metal additive manufacturing (AM) machine that possesses the capability of estimating the coating and printing qualities of the AM process by extracting features from the optical data of the melt pools and chamber layer by layer. The estimated indices and qualities can be derived online using parallel computation to timely diagnose the machine issues and control the process of the next layer. Hence, when an AM machine is equipped with the IAMM architecture, it can efficiently manufacture a 3-D part with reduced defects in real time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2020.3012622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-9483-326X</orcidid><orcidid>https://orcid.org/0000-0001-8652-2907</orcidid><orcidid>https://orcid.org/0000-0002-8175-436X</orcidid><orcidid>https://orcid.org/0000-0001-6527-4879</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2021-01, Vol.18 (1), p.269-281
issn 1545-5955
1558-3783
language eng
recordid cdi_proquest_journals_2477251615
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in situ metrology
Additive manufacturing
Automatic virtual metrology (AVM)
Buildings
Computer architecture
Defects
Estimation
Feature extraction
intelligent AM metrology (IAMM) architecture
Material properties
Mechanical factors
Melt pools
melt-pool
metal additive manufacturing
Metals
Metrology
Monitoring
Parallel processing
Parameter robustness
Process parameters
Quality control
title An Online AM Quality Estimation Architecture From Pool to Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Online%20AM%20Quality%20Estimation%20Architecture%20From%20Pool%20to%20Layer&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Yang,%20Haw-Ching&rft.date=2021-01&rft.volume=18&rft.issue=1&rft.spage=269&rft.epage=281&rft.pages=269-281&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2020.3012622&rft_dat=%3Cproquest_RIE%3E2477251615%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477251615&rft_id=info:pmid/&rft_ieee_id=9164998&rfr_iscdi=true