Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks

Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021-01, Vol.14, p.75-82
Hauptverfasser: Bianchi, Filippo Maria, Grahn, Jakob, Eckerstorfer, Markus, Malnes, Eirik, Vickers, Hannah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 75
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Bianchi, Filippo Maria
Grahn, Jakob
Eckerstorfer, Markus
Malnes, Eirik
Vickers, Hannah
description Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.
doi_str_mv 10.1109/JSTARS.2020.3036914
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_proquest_journals_2477247795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9254089</ieee_id><doaj_id>oai_doaj_org_article_b05622fd7eb5419393fa91097e1bacae</doaj_id><sourcerecordid>2477247795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEkvhE_RAJI4oy9jj_PFxtaJlUVWkTRFHa-I4Wy_ZuNhJV_32eJtSrj1YY3l-78kzL0nOGSwZA_nle32z2tZLDhyWCFhIJl4lC85ylrEc89fJgkmUGRMg3ibvQtgDFLyUuEi29eCO6eqeehr0rUlrszuYYaTRuiG1Q1qvtunmQDsT0l92vE0vpr5_SNduuHf9dIKoT6_N5B_LeHT-d3ifvOmoD-bDUz1Lfl58vVl_y65-XG7Wq6tMC-RjVnBWiK5tioIqLEvZdFiAlqDzrkBDBmKLWqwE19giJ9SkK6hIttQQEsezZDP7to726s7bA_kH5ciqxwfnd4r8aHVvVAN5wXnXlqbJxWkV2JGMiysNa0iTiV4fZy_tbRjtoAbnSTEALBUHUYlIfJqJO-_-TCaMau8mH8cPiouyPB2ZRwr_-bgQvOme_8VAnaJSc1TqFJV6iiqqqll1NI3rgrZm0OZZCTEsKAVDGW-Aazuns3bTMEbp55dLI30-09aY_5TkuYBK4l9kmK8D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477247795</pqid></control><display><type>article</type><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>IEEE Electronic Library (IEL)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</creator><creatorcontrib>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</creatorcontrib><description>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</description><identifier>ISSN: 1939-1404</identifier><identifier>ISSN: 1558-0644</identifier><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 2151-1535</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/JSTARS.2020.3036914</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Avalanches ; Backscatter ; Backscattering ; Convolutional neural networks (CNNs) ; Deep learning ; Detection ; Engineering ; Engineering, Electrical &amp; Electronic ; Geography, Physical ; Image processing ; Image segmentation ; Imagery ; Imaging Science &amp; Photographic Technology ; Informasjons- og kommunikasjonsteknologi: 550 ; Information and communication technology: 550 ; Information processing ; Inspection ; Landslides ; Machine learning ; Monitoring ; Neural networks ; Peak to average power ratio ; Physical Geography ; Physical Sciences ; Radar ; Radar detection ; Radar imaging ; Radar satellites ; Remote Sensing ; saliency segmentation ; SAR (radar) ; Satellite imagery ; Science &amp; Technology ; Sentinel-1 (S1) ; Signal processing ; Snow ; Snow avalanches ; Spaceborne remote sensing ; Surveying ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Technology ; Technology: 500 ; Teknologi: 500 ; VDP ; Visual inspection</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021-01, Vol.14, p.75-82</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000607413900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</citedby><cites>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</cites><orcidid>0000-0002-0765-0490 ; 0000-0002-7145-3846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,2103,2115,26572,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Bianchi, Filippo Maria</creatorcontrib><creatorcontrib>Grahn, Jakob</creatorcontrib><creatorcontrib>Eckerstorfer, Markus</creatorcontrib><creatorcontrib>Malnes, Eirik</creatorcontrib><creatorcontrib>Vickers, Hannah</creatorcontrib><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Avalanches</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Geography, Physical</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Informasjons- og kommunikasjonsteknologi: 550</subject><subject>Information and communication technology: 550</subject><subject>Information processing</subject><subject>Inspection</subject><subject>Landslides</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Peak to average power ratio</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radar satellites</subject><subject>Remote Sensing</subject><subject>saliency segmentation</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Science &amp; Technology</subject><subject>Sentinel-1 (S1)</subject><subject>Signal processing</subject><subject>Snow</subject><subject>Snow avalanches</subject><subject>Spaceborne remote sensing</subject><subject>Surveying</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Technology</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><subject>Visual inspection</subject><issn>1939-1404</issn><issn>1558-0644</issn><issn>0196-2892</issn><issn>2151-1535</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEEkvhE_RAJI4oy9jj_PFxtaJlUVWkTRFHa-I4Wy_ZuNhJV_32eJtSrj1YY3l-78kzL0nOGSwZA_nle32z2tZLDhyWCFhIJl4lC85ylrEc89fJgkmUGRMg3ibvQtgDFLyUuEi29eCO6eqeehr0rUlrszuYYaTRuiG1Q1qvtunmQDsT0l92vE0vpr5_SNduuHf9dIKoT6_N5B_LeHT-d3ifvOmoD-bDUz1Lfl58vVl_y65-XG7Wq6tMC-RjVnBWiK5tioIqLEvZdFiAlqDzrkBDBmKLWqwE19giJ9SkK6hIttQQEsezZDP7to726s7bA_kH5ciqxwfnd4r8aHVvVAN5wXnXlqbJxWkV2JGMiysNa0iTiV4fZy_tbRjtoAbnSTEALBUHUYlIfJqJO-_-TCaMau8mH8cPiouyPB2ZRwr_-bgQvOme_8VAnaJSc1TqFJV6iiqqqll1NI3rgrZm0OZZCTEsKAVDGW-Aazuns3bTMEbp55dLI30-09aY_5TkuYBK4l9kmK8D</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bianchi, Filippo Maria</creator><creator>Grahn, Jakob</creator><creator>Eckerstorfer, Markus</creator><creator>Malnes, Eirik</creator><creator>Vickers, Hannah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0765-0490</orcidid><orcidid>https://orcid.org/0000-0002-7145-3846</orcidid></search><sort><creationdate>20210101</creationdate><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><author>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Avalanches</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Geography, Physical</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Informasjons- og kommunikasjonsteknologi: 550</topic><topic>Information and communication technology: 550</topic><topic>Information processing</topic><topic>Inspection</topic><topic>Landslides</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Peak to average power ratio</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radar satellites</topic><topic>Remote Sensing</topic><topic>saliency segmentation</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Science &amp; Technology</topic><topic>Sentinel-1 (S1)</topic><topic>Signal processing</topic><topic>Snow</topic><topic>Snow avalanches</topic><topic>Spaceborne remote sensing</topic><topic>Surveying</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Technology</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><topic>Visual inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Filippo Maria</creatorcontrib><creatorcontrib>Grahn, Jakob</creatorcontrib><creatorcontrib>Eckerstorfer, Markus</creatorcontrib><creatorcontrib>Malnes, Eirik</creatorcontrib><creatorcontrib>Vickers, Hannah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Filippo Maria</au><au>Grahn, Jakob</au><au>Eckerstorfer, Markus</au><au>Malnes, Eirik</au><au>Vickers, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>14</volume><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>1939-1404</issn><issn>1558-0644</issn><issn>0196-2892</issn><eissn>2151-1535</eissn><eissn>1558-0644</eissn><coden>IJSTHZ</coden><abstract>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3036914</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0765-0490</orcidid><orcidid>https://orcid.org/0000-0002-7145-3846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021-01, Vol.14, p.75-82
issn 1939-1404
1558-0644
0196-2892
2151-1535
1558-0644
language eng
recordid cdi_proquest_journals_2477247795
source NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IEEE Electronic Library (IEL); EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial neural networks
Avalanches
Backscatter
Backscattering
Convolutional neural networks (CNNs)
Deep learning
Detection
Engineering
Engineering, Electrical & Electronic
Geography, Physical
Image processing
Image segmentation
Imagery
Imaging Science & Photographic Technology
Informasjons- og kommunikasjonsteknologi: 550
Information and communication technology: 550
Information processing
Inspection
Landslides
Machine learning
Monitoring
Neural networks
Peak to average power ratio
Physical Geography
Physical Sciences
Radar
Radar detection
Radar imaging
Radar satellites
Remote Sensing
saliency segmentation
SAR (radar)
Satellite imagery
Science & Technology
Sentinel-1 (S1)
Signal processing
Snow
Snow avalanches
Spaceborne remote sensing
Surveying
Synthetic aperture radar
synthetic aperture radar (SAR)
Technology
Technology: 500
Teknologi: 500
VDP
Visual inspection
title Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snow%20Avalanche%20Segmentation%20in%20SAR%20Images%20With%20Fully%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Bianchi,%20Filippo%20Maria&rft.date=2021-01-01&rft.volume=14&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3036914&rft_dat=%3Cproquest_crist%3E2477247795%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477247795&rft_id=info:pmid/&rft_ieee_id=9254089&rft_doaj_id=oai_doaj_org_article_b05622fd7eb5419393fa91097e1bacae&rfr_iscdi=true