Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks
Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021-01, Vol.14, p.75-82 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | |
container_start_page | 75 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Bianchi, Filippo Maria Grahn, Jakob Eckerstorfer, Markus Malnes, Eirik Vickers, Hannah |
description | Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered. |
doi_str_mv | 10.1109/JSTARS.2020.3036914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_proquest_journals_2477247795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9254089</ieee_id><doaj_id>oai_doaj_org_article_b05622fd7eb5419393fa91097e1bacae</doaj_id><sourcerecordid>2477247795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEkvhE_RAJI4oy9jj_PFxtaJlUVWkTRFHa-I4Wy_ZuNhJV_32eJtSrj1YY3l-78kzL0nOGSwZA_nle32z2tZLDhyWCFhIJl4lC85ylrEc89fJgkmUGRMg3ibvQtgDFLyUuEi29eCO6eqeehr0rUlrszuYYaTRuiG1Q1qvtunmQDsT0l92vE0vpr5_SNduuHf9dIKoT6_N5B_LeHT-d3ifvOmoD-bDUz1Lfl58vVl_y65-XG7Wq6tMC-RjVnBWiK5tioIqLEvZdFiAlqDzrkBDBmKLWqwE19giJ9SkK6hIttQQEsezZDP7to726s7bA_kH5ciqxwfnd4r8aHVvVAN5wXnXlqbJxWkV2JGMiysNa0iTiV4fZy_tbRjtoAbnSTEALBUHUYlIfJqJO-_-TCaMau8mH8cPiouyPB2ZRwr_-bgQvOme_8VAnaJSc1TqFJV6iiqqqll1NI3rgrZm0OZZCTEsKAVDGW-Aazuns3bTMEbp55dLI30-09aY_5TkuYBK4l9kmK8D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477247795</pqid></control><display><type>article</type><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>IEEE Electronic Library (IEL)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</creator><creatorcontrib>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</creatorcontrib><description>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</description><identifier>ISSN: 1939-1404</identifier><identifier>ISSN: 1558-0644</identifier><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 2151-1535</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/JSTARS.2020.3036914</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Avalanches ; Backscatter ; Backscattering ; Convolutional neural networks (CNNs) ; Deep learning ; Detection ; Engineering ; Engineering, Electrical & Electronic ; Geography, Physical ; Image processing ; Image segmentation ; Imagery ; Imaging Science & Photographic Technology ; Informasjons- og kommunikasjonsteknologi: 550 ; Information and communication technology: 550 ; Information processing ; Inspection ; Landslides ; Machine learning ; Monitoring ; Neural networks ; Peak to average power ratio ; Physical Geography ; Physical Sciences ; Radar ; Radar detection ; Radar imaging ; Radar satellites ; Remote Sensing ; saliency segmentation ; SAR (radar) ; Satellite imagery ; Science & Technology ; Sentinel-1 (S1) ; Signal processing ; Snow ; Snow avalanches ; Spaceborne remote sensing ; Surveying ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Technology ; Technology: 500 ; Teknologi: 500 ; VDP ; Visual inspection</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021-01, Vol.14, p.75-82</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000607413900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</citedby><cites>FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</cites><orcidid>0000-0002-0765-0490 ; 0000-0002-7145-3846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,2103,2115,26572,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Bianchi, Filippo Maria</creatorcontrib><creatorcontrib>Grahn, Jakob</creatorcontrib><creatorcontrib>Eckerstorfer, Markus</creatorcontrib><creatorcontrib>Malnes, Eirik</creatorcontrib><creatorcontrib>Vickers, Hannah</creatorcontrib><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Avalanches</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Geography, Physical</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Imaging Science & Photographic Technology</subject><subject>Informasjons- og kommunikasjonsteknologi: 550</subject><subject>Information and communication technology: 550</subject><subject>Information processing</subject><subject>Inspection</subject><subject>Landslides</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Peak to average power ratio</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radar satellites</subject><subject>Remote Sensing</subject><subject>saliency segmentation</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Science & Technology</subject><subject>Sentinel-1 (S1)</subject><subject>Signal processing</subject><subject>Snow</subject><subject>Snow avalanches</subject><subject>Spaceborne remote sensing</subject><subject>Surveying</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Technology</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><subject>Visual inspection</subject><issn>1939-1404</issn><issn>1558-0644</issn><issn>0196-2892</issn><issn>2151-1535</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEEkvhE_RAJI4oy9jj_PFxtaJlUVWkTRFHa-I4Wy_ZuNhJV_32eJtSrj1YY3l-78kzL0nOGSwZA_nle32z2tZLDhyWCFhIJl4lC85ylrEc89fJgkmUGRMg3ibvQtgDFLyUuEi29eCO6eqeehr0rUlrszuYYaTRuiG1Q1qvtunmQDsT0l92vE0vpr5_SNduuHf9dIKoT6_N5B_LeHT-d3ifvOmoD-bDUz1Lfl58vVl_y65-XG7Wq6tMC-RjVnBWiK5tioIqLEvZdFiAlqDzrkBDBmKLWqwE19giJ9SkK6hIttQQEsezZDP7to726s7bA_kH5ciqxwfnd4r8aHVvVAN5wXnXlqbJxWkV2JGMiysNa0iTiV4fZy_tbRjtoAbnSTEALBUHUYlIfJqJO-_-TCaMau8mH8cPiouyPB2ZRwr_-bgQvOme_8VAnaJSc1TqFJV6iiqqqll1NI3rgrZm0OZZCTEsKAVDGW-Aazuns3bTMEbp55dLI30-09aY_5TkuYBK4l9kmK8D</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bianchi, Filippo Maria</creator><creator>Grahn, Jakob</creator><creator>Eckerstorfer, Markus</creator><creator>Malnes, Eirik</creator><creator>Vickers, Hannah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0765-0490</orcidid><orcidid>https://orcid.org/0000-0002-7145-3846</orcidid></search><sort><creationdate>20210101</creationdate><title>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</title><author>Bianchi, Filippo Maria ; Grahn, Jakob ; Eckerstorfer, Markus ; Malnes, Eirik ; Vickers, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-62164fdb66a83779bf360c90c5f63eae0db6ad3842c3d32a3cac808a9daba3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Avalanches</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Geography, Physical</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Imaging Science & Photographic Technology</topic><topic>Informasjons- og kommunikasjonsteknologi: 550</topic><topic>Information and communication technology: 550</topic><topic>Information processing</topic><topic>Inspection</topic><topic>Landslides</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Peak to average power ratio</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radar satellites</topic><topic>Remote Sensing</topic><topic>saliency segmentation</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Science & Technology</topic><topic>Sentinel-1 (S1)</topic><topic>Signal processing</topic><topic>Snow</topic><topic>Snow avalanches</topic><topic>Spaceborne remote sensing</topic><topic>Surveying</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Technology</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><topic>Visual inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Filippo Maria</creatorcontrib><creatorcontrib>Grahn, Jakob</creatorcontrib><creatorcontrib>Eckerstorfer, Markus</creatorcontrib><creatorcontrib>Malnes, Eirik</creatorcontrib><creatorcontrib>Vickers, Hannah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Filippo Maria</au><au>Grahn, Jakob</au><au>Eckerstorfer, Markus</au><au>Malnes, Eirik</au><au>Vickers, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>14</volume><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>1939-1404</issn><issn>1558-0644</issn><issn>0196-2892</issn><eissn>2151-1535</eissn><eissn>1558-0644</eissn><coden>IJSTHZ</coden><abstract>Knowledge about frequency and location of snow avalanche activity is essential for forecasting and mapping of snow avalanche hazard. Traditional field monitoring of avalanche activity has limitations, especially when surveying large and remote areas. In recent years, avalanche detection in Sentinel-1 radar satellite imagery has been developed to improve monitoring. However, the current state-of-the-art detection algorithms, based on radar signal processing techniques, are still much less accurate than human experts. To reduce this gap, we propose a deep learning architecture for detecting avalanches in Sentinel-1 radar images. We trained a neural network on 6345 manually labeled avalanches from 117 Sentinel-1 images, each one consisting of six channels that include backscatter and topographical information. Then, we tested our trained model on a new synthetic aperture radar image. Comparing to the manual labeling (the gold standard), we achieved an F1 score above 66%, whereas the state-of-the-art detection algorithm sits at an F1 score of only 38%. A visual inspection of the results generated by our deep learning model shows that only small avalanches are undetected, whereas some avalanches that were originally not labeled by the human expert are discovered.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3036914</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0765-0490</orcidid><orcidid>https://orcid.org/0000-0002-7145-3846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021-01, Vol.14, p.75-82 |
issn | 1939-1404 1558-0644 0196-2892 2151-1535 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2477247795 |
source | NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IEEE Electronic Library (IEL); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Avalanches Backscatter Backscattering Convolutional neural networks (CNNs) Deep learning Detection Engineering Engineering, Electrical & Electronic Geography, Physical Image processing Image segmentation Imagery Imaging Science & Photographic Technology Informasjons- og kommunikasjonsteknologi: 550 Information and communication technology: 550 Information processing Inspection Landslides Machine learning Monitoring Neural networks Peak to average power ratio Physical Geography Physical Sciences Radar Radar detection Radar imaging Radar satellites Remote Sensing saliency segmentation SAR (radar) Satellite imagery Science & Technology Sentinel-1 (S1) Signal processing Snow Snow avalanches Spaceborne remote sensing Surveying Synthetic aperture radar synthetic aperture radar (SAR) Technology Technology: 500 Teknologi: 500 VDP Visual inspection |
title | Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snow%20Avalanche%20Segmentation%20in%20SAR%20Images%20With%20Fully%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Bianchi,%20Filippo%20Maria&rft.date=2021-01-01&rft.volume=14&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3036914&rft_dat=%3Cproquest_crist%3E2477247795%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477247795&rft_id=info:pmid/&rft_ieee_id=9254089&rft_doaj_id=oai_doaj_org_article_b05622fd7eb5419393fa91097e1bacae&rfr_iscdi=true |