Deep Interactive Bayesian Reinforcement Learning via Meta-Learning
Agents that interact with other agents often do not know a priori what the other agents' strategies are, but have to maximise their own online return while interacting with and learning about others. The optimal adaptive behaviour under uncertainty over the other agents' strategies w.r.t....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zintgraf, Luisa Devlin, Sam Ciosek, Kamil Whiteson, Shimon Hofmann, Katja |
description | Agents that interact with other agents often do not know a priori what the other agents' strategies are, but have to maximise their own online return while interacting with and learning about others. The optimal adaptive behaviour under uncertainty over the other agents' strategies w.r.t. some prior can in principle be computed using the Interactive Bayesian Reinforcement Learning framework. Unfortunately, doing so is intractable in most settings, and existing approximation methods are restricted to small tasks. To overcome this, we propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior. To model beliefs over other agents, we combine sequential and hierarchical Variational Auto-Encoders, and meta-train this inference model alongside the policy. We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2477097757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477097757</sourcerecordid><originalsourceid>FETCH-proquest_journals_24770977573</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgWLT_IeAciEljdK0fKOgi7uVRXiVFX2qSFvz3OujudHB3I5YprRdiVSg1YXmMrZRSLa0yRmes3CJ2_EgJA9TJDchLeGF0QPyCjhofanwgJX5CCOToxgcH_IwJxM_M2LiBe8T8yymb73fXzUF0wT97jKlqfR_okypVWCvX1hqr_7veqp85wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477097757</pqid></control><display><type>article</type><title>Deep Interactive Bayesian Reinforcement Learning via Meta-Learning</title><source>Free E- Journals</source><creator>Zintgraf, Luisa ; Devlin, Sam ; Ciosek, Kamil ; Whiteson, Shimon ; Hofmann, Katja</creator><creatorcontrib>Zintgraf, Luisa ; Devlin, Sam ; Ciosek, Kamil ; Whiteson, Shimon ; Hofmann, Katja</creatorcontrib><description>Agents that interact with other agents often do not know a priori what the other agents' strategies are, but have to maximise their own online return while interacting with and learning about others. The optimal adaptive behaviour under uncertainty over the other agents' strategies w.r.t. some prior can in principle be computed using the Interactive Bayesian Reinforcement Learning framework. Unfortunately, doing so is intractable in most settings, and existing approximation methods are restricted to small tasks. To overcome this, we propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior. To model beliefs over other agents, we combine sequential and hierarchical Variational Auto-Encoders, and meta-train this inference model alongside the policy. We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Bayesian analysis ; Coders ; Inference ; Machine learning</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Zintgraf, Luisa</creatorcontrib><creatorcontrib>Devlin, Sam</creatorcontrib><creatorcontrib>Ciosek, Kamil</creatorcontrib><creatorcontrib>Whiteson, Shimon</creatorcontrib><creatorcontrib>Hofmann, Katja</creatorcontrib><title>Deep Interactive Bayesian Reinforcement Learning via Meta-Learning</title><title>arXiv.org</title><description>Agents that interact with other agents often do not know a priori what the other agents' strategies are, but have to maximise their own online return while interacting with and learning about others. The optimal adaptive behaviour under uncertainty over the other agents' strategies w.r.t. some prior can in principle be computed using the Interactive Bayesian Reinforcement Learning framework. Unfortunately, doing so is intractable in most settings, and existing approximation methods are restricted to small tasks. To overcome this, we propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior. To model beliefs over other agents, we combine sequential and hierarchical Variational Auto-Encoders, and meta-train this inference model alongside the policy. We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Coders</subject><subject>Inference</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNij0LwjAUAIMgWLT_IeAciEljdK0fKOgi7uVRXiVFX2qSFvz3OujudHB3I5YprRdiVSg1YXmMrZRSLa0yRmes3CJ2_EgJA9TJDchLeGF0QPyCjhofanwgJX5CCOToxgcH_IwJxM_M2LiBe8T8yymb73fXzUF0wT97jKlqfR_okypVWCvX1hqr_7veqp85wg</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Zintgraf, Luisa</creator><creator>Devlin, Sam</creator><creator>Ciosek, Kamil</creator><creator>Whiteson, Shimon</creator><creator>Hofmann, Katja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220415</creationdate><title>Deep Interactive Bayesian Reinforcement Learning via Meta-Learning</title><author>Zintgraf, Luisa ; Devlin, Sam ; Ciosek, Kamil ; Whiteson, Shimon ; Hofmann, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24770977573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Coders</topic><topic>Inference</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zintgraf, Luisa</creatorcontrib><creatorcontrib>Devlin, Sam</creatorcontrib><creatorcontrib>Ciosek, Kamil</creatorcontrib><creatorcontrib>Whiteson, Shimon</creatorcontrib><creatorcontrib>Hofmann, Katja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zintgraf, Luisa</au><au>Devlin, Sam</au><au>Ciosek, Kamil</au><au>Whiteson, Shimon</au><au>Hofmann, Katja</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Interactive Bayesian Reinforcement Learning via Meta-Learning</atitle><jtitle>arXiv.org</jtitle><date>2022-04-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Agents that interact with other agents often do not know a priori what the other agents' strategies are, but have to maximise their own online return while interacting with and learning about others. The optimal adaptive behaviour under uncertainty over the other agents' strategies w.r.t. some prior can in principle be computed using the Interactive Bayesian Reinforcement Learning framework. Unfortunately, doing so is intractable in most settings, and existing approximation methods are restricted to small tasks. To overcome this, we propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior. To model beliefs over other agents, we combine sequential and hierarchical Variational Auto-Encoders, and meta-train this inference model alongside the policy. We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2477097757 |
source | Free E- Journals |
subjects | Approximation Bayesian analysis Coders Inference Machine learning |
title | Deep Interactive Bayesian Reinforcement Learning via Meta-Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Interactive%20Bayesian%20Reinforcement%20Learning%20via%20Meta-Learning&rft.jtitle=arXiv.org&rft.au=Zintgraf,%20Luisa&rft.date=2022-04-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2477097757%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477097757&rft_id=info:pmid/&rfr_iscdi=true |