Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide

Phosphorus oxide (POx) capped by aluminum oxide (Al2O3), prepared by atomic layer deposition (ALD), has recently been introduced as a surface passivation scheme for planar n‐type FZ silicon. In this work, a fast pulsed‐flow plasma‐enhanced chemical vapor deposition (PECVD) process for the POx layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2021-01, Vol.15 (1), p.n/a
Hauptverfasser: Melskens, Jimmy, Theeuwes, Roel J., Black, Lachlan E., Berghuis, Willem-Jan H., Macco, Bart, Bronsveld, Paula C. P., Kessels, W. M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 15
creator Melskens, Jimmy
Theeuwes, Roel J.
Black, Lachlan E.
Berghuis, Willem-Jan H.
Macco, Bart
Bronsveld, Paula C. P.
Kessels, W. M. M.
description Phosphorus oxide (POx) capped by aluminum oxide (Al2O3), prepared by atomic layer deposition (ALD), has recently been introduced as a surface passivation scheme for planar n‐type FZ silicon. In this work, a fast pulsed‐flow plasma‐enhanced chemical vapor deposition (PECVD) process for the POx layer is introduced, making it possible to increase the POx deposition rate significantly while maintaining the POx/Al2O3 passivation quality. An excellent surface passivation is realized on n‐type planar FZ and Cz substrates (J0 = 3.0 fA cm−2). Furthermore, it is demonstrated that the POx/Al2O3 stack can passivate textured surfaces and that the application of an additional PECVD SiNx capping layer renders the stack stable to a firing treatment that is typically used in fire‐through contact formation (J0 = 12 fA cm−2). The excellent surface passivation is enabled by a high positive fixed charge density (Qf ≈ 4 × 1012 cm−2) and an ultralow interface defect density (Dit ≈ 5 × 1010 eV−1 cm−2). Finally, outstanding passivation is demonstrated on textured silicon with a heavy n+ surface doping, as is used in solar cells, on par with alnealed SiO2. These findings indicate that POx/Al2O3 is a highly suited passivation scheme for n‐type silicon surfaces in typical industrial solar cells. Phosphorus oxide (POx) has been fabricated using pulsed‐flow plasma‐enhanced chemical vapor deposition. When capped by Al2O3, the resulting stack enables excellent surface passivation on various n‐type silicon substrates, including FZ and Cz wafers with both planar and textured surfaces, as well as diffused n+ textured surfaces. Firing stability with a SiNx capping layer is demonstrated as well.
doi_str_mv 10.1002/pssr.202000399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476886154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476886154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-a7fdf60db2c3471f69cd3fd492f19ea73447a7570720b3a3e46acced696ed4593</originalsourceid><addsrcrecordid>eNqFkcFuGyEQhldVK9V1cu0ZqWe7LLBgjpbjtJEsZVWnua7GLMhE7ELBm8S3PkIeIk-WJwnRpukxp2GG758f8RfF1xLPS4zJ95BSnBNMMMZUyg_FpFxwMuNE4I9v54p9Lr6kdINxJQWjk-Jxfa-0c7o_oBpSsrdwsL5H3qD-6e_D1TFotLXOqjzbDtGA0gmte9g53aLdEdWDS7rN5Lnzd6h2kDrI3brfQ68ystrrzipw6BqCj-hMB5_sP4d671PY-zgkdHlvW41WEMK4d-mGzvZDN16cFJ8MZKPT1zotfp-vr1Y_Z5vLHxer5WamaCXkDIRpDcftjijKRGm4VC01LZPElFKDoIwJEJXAguAdBaoZB5VfySXXLasknRbfxr0h-j-DTofmxg-xz5YNYYIvFrysWKbmI6Wiz1-uTROi7SAemxI3L0k0L0k0b0lkgRwFd9bp4zt0U2-3v_5rnwEH0ZNr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476886154</pqid></control><display><type>article</type><title>Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Melskens, Jimmy ; Theeuwes, Roel J. ; Black, Lachlan E. ; Berghuis, Willem-Jan H. ; Macco, Bart ; Bronsveld, Paula C. P. ; Kessels, W. M. M.</creator><creatorcontrib>Melskens, Jimmy ; Theeuwes, Roel J. ; Black, Lachlan E. ; Berghuis, Willem-Jan H. ; Macco, Bart ; Bronsveld, Paula C. P. ; Kessels, W. M. M.</creatorcontrib><description>Phosphorus oxide (POx) capped by aluminum oxide (Al2O3), prepared by atomic layer deposition (ALD), has recently been introduced as a surface passivation scheme for planar n‐type FZ silicon. In this work, a fast pulsed‐flow plasma‐enhanced chemical vapor deposition (PECVD) process for the POx layer is introduced, making it possible to increase the POx deposition rate significantly while maintaining the POx/Al2O3 passivation quality. An excellent surface passivation is realized on n‐type planar FZ and Cz substrates (J0 = 3.0 fA cm−2). Furthermore, it is demonstrated that the POx/Al2O3 stack can passivate textured surfaces and that the application of an additional PECVD SiNx capping layer renders the stack stable to a firing treatment that is typically used in fire‐through contact formation (J0 = 12 fA cm−2). The excellent surface passivation is enabled by a high positive fixed charge density (Qf ≈ 4 × 1012 cm−2) and an ultralow interface defect density (Dit ≈ 5 × 1010 eV−1 cm−2). Finally, outstanding passivation is demonstrated on textured silicon with a heavy n+ surface doping, as is used in solar cells, on par with alnealed SiO2. These findings indicate that POx/Al2O3 is a highly suited passivation scheme for n‐type silicon surfaces in typical industrial solar cells. Phosphorus oxide (POx) has been fabricated using pulsed‐flow plasma‐enhanced chemical vapor deposition. When capped by Al2O3, the resulting stack enables excellent surface passivation on various n‐type silicon substrates, including FZ and Cz wafers with both planar and textured surfaces, as well as diffused n+ textured surfaces. Firing stability with a SiNx capping layer is demonstrated as well.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202000399</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Atomic layer epitaxy ; Capping ; Charge density ; Chemical vapor deposition ; Passivity ; Phosphorus ; phosphorus oxide ; Phosphorus oxides ; Photovoltaic cells ; Silicon ; Silicon dioxide ; Solar cells ; Substrates ; surface passivation</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2021-01, Vol.15 (1), p.n/a</ispartof><rights>2020 The Authors. Physica Status Solidi (RRL) – Rapid Research Letters published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-a7fdf60db2c3471f69cd3fd492f19ea73447a7570720b3a3e46acced696ed4593</citedby><cites>FETCH-LOGICAL-c3579-a7fdf60db2c3471f69cd3fd492f19ea73447a7570720b3a3e46acced696ed4593</cites><orcidid>0000-0001-6877-7340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202000399$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202000399$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Melskens, Jimmy</creatorcontrib><creatorcontrib>Theeuwes, Roel J.</creatorcontrib><creatorcontrib>Black, Lachlan E.</creatorcontrib><creatorcontrib>Berghuis, Willem-Jan H.</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><creatorcontrib>Bronsveld, Paula C. P.</creatorcontrib><creatorcontrib>Kessels, W. M. M.</creatorcontrib><title>Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Phosphorus oxide (POx) capped by aluminum oxide (Al2O3), prepared by atomic layer deposition (ALD), has recently been introduced as a surface passivation scheme for planar n‐type FZ silicon. In this work, a fast pulsed‐flow plasma‐enhanced chemical vapor deposition (PECVD) process for the POx layer is introduced, making it possible to increase the POx deposition rate significantly while maintaining the POx/Al2O3 passivation quality. An excellent surface passivation is realized on n‐type planar FZ and Cz substrates (J0 = 3.0 fA cm−2). Furthermore, it is demonstrated that the POx/Al2O3 stack can passivate textured surfaces and that the application of an additional PECVD SiNx capping layer renders the stack stable to a firing treatment that is typically used in fire‐through contact formation (J0 = 12 fA cm−2). The excellent surface passivation is enabled by a high positive fixed charge density (Qf ≈ 4 × 1012 cm−2) and an ultralow interface defect density (Dit ≈ 5 × 1010 eV−1 cm−2). Finally, outstanding passivation is demonstrated on textured silicon with a heavy n+ surface doping, as is used in solar cells, on par with alnealed SiO2. These findings indicate that POx/Al2O3 is a highly suited passivation scheme for n‐type silicon surfaces in typical industrial solar cells. Phosphorus oxide (POx) has been fabricated using pulsed‐flow plasma‐enhanced chemical vapor deposition. When capped by Al2O3, the resulting stack enables excellent surface passivation on various n‐type silicon substrates, including FZ and Cz wafers with both planar and textured surfaces, as well as diffused n+ textured surfaces. Firing stability with a SiNx capping layer is demonstrated as well.</description><subject>Aluminum oxide</subject><subject>Atomic layer epitaxy</subject><subject>Capping</subject><subject>Charge density</subject><subject>Chemical vapor deposition</subject><subject>Passivity</subject><subject>Phosphorus</subject><subject>phosphorus oxide</subject><subject>Phosphorus oxides</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>surface passivation</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFuGyEQhldVK9V1cu0ZqWe7LLBgjpbjtJEsZVWnua7GLMhE7ELBm8S3PkIeIk-WJwnRpukxp2GG758f8RfF1xLPS4zJ95BSnBNMMMZUyg_FpFxwMuNE4I9v54p9Lr6kdINxJQWjk-Jxfa-0c7o_oBpSsrdwsL5H3qD-6e_D1TFotLXOqjzbDtGA0gmte9g53aLdEdWDS7rN5Lnzd6h2kDrI3brfQ68ystrrzipw6BqCj-hMB5_sP4d671PY-zgkdHlvW41WEMK4d-mGzvZDN16cFJ8MZKPT1zotfp-vr1Y_Z5vLHxer5WamaCXkDIRpDcftjijKRGm4VC01LZPElFKDoIwJEJXAguAdBaoZB5VfySXXLasknRbfxr0h-j-DTofmxg-xz5YNYYIvFrysWKbmI6Wiz1-uTROi7SAemxI3L0k0L0k0b0lkgRwFd9bp4zt0U2-3v_5rnwEH0ZNr</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Melskens, Jimmy</creator><creator>Theeuwes, Roel J.</creator><creator>Black, Lachlan E.</creator><creator>Berghuis, Willem-Jan H.</creator><creator>Macco, Bart</creator><creator>Bronsveld, Paula C. P.</creator><creator>Kessels, W. M. M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6877-7340</orcidid></search><sort><creationdate>202101</creationdate><title>Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide</title><author>Melskens, Jimmy ; Theeuwes, Roel J. ; Black, Lachlan E. ; Berghuis, Willem-Jan H. ; Macco, Bart ; Bronsveld, Paula C. P. ; Kessels, W. M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-a7fdf60db2c3471f69cd3fd492f19ea73447a7570720b3a3e46acced696ed4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Atomic layer epitaxy</topic><topic>Capping</topic><topic>Charge density</topic><topic>Chemical vapor deposition</topic><topic>Passivity</topic><topic>Phosphorus</topic><topic>phosphorus oxide</topic><topic>Phosphorus oxides</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>surface passivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melskens, Jimmy</creatorcontrib><creatorcontrib>Theeuwes, Roel J.</creatorcontrib><creatorcontrib>Black, Lachlan E.</creatorcontrib><creatorcontrib>Berghuis, Willem-Jan H.</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><creatorcontrib>Bronsveld, Paula C. P.</creatorcontrib><creatorcontrib>Kessels, W. M. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melskens, Jimmy</au><au>Theeuwes, Roel J.</au><au>Black, Lachlan E.</au><au>Berghuis, Willem-Jan H.</au><au>Macco, Bart</au><au>Bronsveld, Paula C. P.</au><au>Kessels, W. M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2021-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Phosphorus oxide (POx) capped by aluminum oxide (Al2O3), prepared by atomic layer deposition (ALD), has recently been introduced as a surface passivation scheme for planar n‐type FZ silicon. In this work, a fast pulsed‐flow plasma‐enhanced chemical vapor deposition (PECVD) process for the POx layer is introduced, making it possible to increase the POx deposition rate significantly while maintaining the POx/Al2O3 passivation quality. An excellent surface passivation is realized on n‐type planar FZ and Cz substrates (J0 = 3.0 fA cm−2). Furthermore, it is demonstrated that the POx/Al2O3 stack can passivate textured surfaces and that the application of an additional PECVD SiNx capping layer renders the stack stable to a firing treatment that is typically used in fire‐through contact formation (J0 = 12 fA cm−2). The excellent surface passivation is enabled by a high positive fixed charge density (Qf ≈ 4 × 1012 cm−2) and an ultralow interface defect density (Dit ≈ 5 × 1010 eV−1 cm−2). Finally, outstanding passivation is demonstrated on textured silicon with a heavy n+ surface doping, as is used in solar cells, on par with alnealed SiO2. These findings indicate that POx/Al2O3 is a highly suited passivation scheme for n‐type silicon surfaces in typical industrial solar cells. Phosphorus oxide (POx) has been fabricated using pulsed‐flow plasma‐enhanced chemical vapor deposition. When capped by Al2O3, the resulting stack enables excellent surface passivation on various n‐type silicon substrates, including FZ and Cz wafers with both planar and textured surfaces, as well as diffused n+ textured surfaces. Firing stability with a SiNx capping layer is demonstrated as well.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202000399</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6877-7340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2021-01, Vol.15 (1), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2476886154
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Atomic layer epitaxy
Capping
Charge density
Chemical vapor deposition
Passivity
Phosphorus
phosphorus oxide
Phosphorus oxides
Photovoltaic cells
Silicon
Silicon dioxide
Solar cells
Substrates
surface passivation
title Excellent Passivation of n‐Type Silicon Surfaces Enabled by Pulsed‐Flow Plasma‐Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excellent%20Passivation%20of%20n%E2%80%90Type%20Silicon%20Surfaces%20Enabled%20by%20Pulsed%E2%80%90Flow%20Plasma%E2%80%90Enhanced%20Chemical%20Vapor%20Deposition%20of%20Phosphorus%20Oxide%20Capped%20by%20Aluminum%20Oxide&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Melskens,%20Jimmy&rft.date=2021-01&rft.volume=15&rft.issue=1&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202000399&rft_dat=%3Cproquest_cross%3E2476886154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476886154&rft_id=info:pmid/&rfr_iscdi=true