Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation
RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV. Here we report the design, identification and evolution of an air‐stable surface [bipy‐RuII(CO)2Cl2] site th...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2021-01, Vol.133 (3), p.1232-1239 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1239 |
---|---|
container_issue | 3 |
container_start_page | 1232 |
container_title | Angewandte Chemie |
container_volume | 133 |
creator | Kang, Liqun Wang, Bolun Thetford, Adam Wu, Ke Danaie, Mohsen He, Qian Gibson, Emma K. Sun, Ling‐Dong Asakura, Hiroyuki Catlow, C. Richard A. Wang, Feng Ryan |
description | RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV. Here we report the design, identification and evolution of an air‐stable surface [bipy‐RuII(CO)2Cl2] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy‐RuIIICl4]− with simultaneous ligand exchange from Cl− to CO. This structural evolution was witnessed by a combination of in situ X‐ray and infrared spectroscopy studies. The [bipy‐RuII(CO)2Cl2] site enables oxidation of CO with a turnover frequency of 0.73×10−2 s−1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure–activity relationship by demonstrating a practical control over both geometric and electronic structures of single‐site catalysts at molecular level.
An air‐stable surface [bipy‐RuII(CO)2Cl2] single site is designed towards CO oxidation, while all other RuIII single sites are not active. The methodology is further extended to nine transition‐metal single‐site systems, enabling the use of surface coordination chemistry in heterogeneous catalysis. |
doi_str_mv | 10.1002/ange.202008370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476858718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476858718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1570-10310cf38b12c88a2f38369567edf2634e76089f21051b1c0e3312e061db97b63</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKdXzwEvCnb7krRJehxzzsJw4PQc0jSZGVs703ay_97OiR49ve_B770PHkLXBAYEgA51ubQDChRAMgEnqEcSSiImEnGKegBxHEkap-fooq5XAMCpSHsof7C1X5b3OCts2XjnjW581XldFniyq9btweLKYY0XbXDaWPzSNu-29O3mNsuGWZbd4YUvl2vbSWOxqwIez_HINH733XWJzpxe1_bqR_vo7XHyOn6KZvNpNh7NIkMSAREBRsA4JnNCjZSadifjacKFLRzlLLaCg0wdJZCQnBiwjBFqgZMiT0XOWR_dHHu3ofpobd2oVdWGsnupaCy4TKQgsqMGR8qEqq6DdWob_EaHvSKgDjuqw47qd8cukB4Dn35t9__QavQ8nfxlvwDQ3XQX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476858718</pqid></control><display><type>article</type><title>Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kang, Liqun ; Wang, Bolun ; Thetford, Adam ; Wu, Ke ; Danaie, Mohsen ; He, Qian ; Gibson, Emma K. ; Sun, Ling‐Dong ; Asakura, Hiroyuki ; Catlow, C. Richard A. ; Wang, Feng Ryan</creator><creatorcontrib>Kang, Liqun ; Wang, Bolun ; Thetford, Adam ; Wu, Ke ; Danaie, Mohsen ; He, Qian ; Gibson, Emma K. ; Sun, Ling‐Dong ; Asakura, Hiroyuki ; Catlow, C. Richard A. ; Wang, Feng Ryan</creatorcontrib><description>RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV. Here we report the design, identification and evolution of an air‐stable surface [bipy‐RuII(CO)2Cl2] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy‐RuIIICl4]− with simultaneous ligand exchange from Cl− to CO. This structural evolution was witnessed by a combination of in situ X‐ray and infrared spectroscopy studies. The [bipy‐RuII(CO)2Cl2] site enables oxidation of CO with a turnover frequency of 0.73×10−2 s−1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure–activity relationship by demonstrating a practical control over both geometric and electronic structures of single‐site catalysts at molecular level.
An air‐stable surface [bipy‐RuII(CO)2Cl2] single site is designed towards CO oxidation, while all other RuIII single sites are not active. The methodology is further extended to nine transition‐metal single‐site systems, enabling the use of surface coordination chemistry in heterogeneous catalysis.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202008370</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon monoxide ; Catalysis ; Catalysts ; Chemistry ; Evolution ; heterogeneous catalysis ; Infrared spectroscopy ; Oxidation ; Ruthenium ; ruthenium(II/III) complexes ; single site ; surface coordination chemistry ; X-ray absorption spectroscopy</subject><ispartof>Angewandte Chemie, 2021-01, Vol.133 (3), p.1232-1239</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1570-10310cf38b12c88a2f38369567edf2634e76089f21051b1c0e3312e061db97b63</cites><orcidid>0000-0003-2100-4310 ; 0000-0002-2475-606X ; 0000-0002-7839-3786 ; 0000-0002-1235-686X ; 0000-0003-4891-3581 ; 0000-0002-9325-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202008370$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202008370$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kang, Liqun</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Thetford, Adam</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Danaie, Mohsen</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Gibson, Emma K.</creatorcontrib><creatorcontrib>Sun, Ling‐Dong</creatorcontrib><creatorcontrib>Asakura, Hiroyuki</creatorcontrib><creatorcontrib>Catlow, C. Richard A.</creatorcontrib><creatorcontrib>Wang, Feng Ryan</creatorcontrib><title>Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation</title><title>Angewandte Chemie</title><description>RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV. Here we report the design, identification and evolution of an air‐stable surface [bipy‐RuII(CO)2Cl2] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy‐RuIIICl4]− with simultaneous ligand exchange from Cl− to CO. This structural evolution was witnessed by a combination of in situ X‐ray and infrared spectroscopy studies. The [bipy‐RuII(CO)2Cl2] site enables oxidation of CO with a turnover frequency of 0.73×10−2 s−1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure–activity relationship by demonstrating a practical control over both geometric and electronic structures of single‐site catalysts at molecular level.
An air‐stable surface [bipy‐RuII(CO)2Cl2] single site is designed towards CO oxidation, while all other RuIII single sites are not active. The methodology is further extended to nine transition‐metal single‐site systems, enabling the use of surface coordination chemistry in heterogeneous catalysis.</description><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Evolution</subject><subject>heterogeneous catalysis</subject><subject>Infrared spectroscopy</subject><subject>Oxidation</subject><subject>Ruthenium</subject><subject>ruthenium(II/III) complexes</subject><subject>single site</subject><subject>surface coordination chemistry</subject><subject>X-ray absorption spectroscopy</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFLwzAYxYMoOKdXzwEvCnb7krRJehxzzsJw4PQc0jSZGVs703ay_97OiR49ve_B770PHkLXBAYEgA51ubQDChRAMgEnqEcSSiImEnGKegBxHEkap-fooq5XAMCpSHsof7C1X5b3OCts2XjnjW581XldFniyq9btweLKYY0XbXDaWPzSNu-29O3mNsuGWZbd4YUvl2vbSWOxqwIez_HINH733XWJzpxe1_bqR_vo7XHyOn6KZvNpNh7NIkMSAREBRsA4JnNCjZSadifjacKFLRzlLLaCg0wdJZCQnBiwjBFqgZMiT0XOWR_dHHu3ofpobd2oVdWGsnupaCy4TKQgsqMGR8qEqq6DdWob_EaHvSKgDjuqw47qd8cukB4Dn35t9__QavQ8nfxlvwDQ3XQX</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Kang, Liqun</creator><creator>Wang, Bolun</creator><creator>Thetford, Adam</creator><creator>Wu, Ke</creator><creator>Danaie, Mohsen</creator><creator>He, Qian</creator><creator>Gibson, Emma K.</creator><creator>Sun, Ling‐Dong</creator><creator>Asakura, Hiroyuki</creator><creator>Catlow, C. Richard A.</creator><creator>Wang, Feng Ryan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2100-4310</orcidid><orcidid>https://orcid.org/0000-0002-2475-606X</orcidid><orcidid>https://orcid.org/0000-0002-7839-3786</orcidid><orcidid>https://orcid.org/0000-0002-1235-686X</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-9325-7571</orcidid></search><sort><creationdate>20210118</creationdate><title>Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation</title><author>Kang, Liqun ; Wang, Bolun ; Thetford, Adam ; Wu, Ke ; Danaie, Mohsen ; He, Qian ; Gibson, Emma K. ; Sun, Ling‐Dong ; Asakura, Hiroyuki ; Catlow, C. Richard A. ; Wang, Feng Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1570-10310cf38b12c88a2f38369567edf2634e76089f21051b1c0e3312e061db97b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Evolution</topic><topic>heterogeneous catalysis</topic><topic>Infrared spectroscopy</topic><topic>Oxidation</topic><topic>Ruthenium</topic><topic>ruthenium(II/III) complexes</topic><topic>single site</topic><topic>surface coordination chemistry</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Liqun</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Thetford, Adam</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Danaie, Mohsen</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Gibson, Emma K.</creatorcontrib><creatorcontrib>Sun, Ling‐Dong</creatorcontrib><creatorcontrib>Asakura, Hiroyuki</creatorcontrib><creatorcontrib>Catlow, C. Richard A.</creatorcontrib><creatorcontrib>Wang, Feng Ryan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Liqun</au><au>Wang, Bolun</au><au>Thetford, Adam</au><au>Wu, Ke</au><au>Danaie, Mohsen</au><au>He, Qian</au><au>Gibson, Emma K.</au><au>Sun, Ling‐Dong</au><au>Asakura, Hiroyuki</au><au>Catlow, C. Richard A.</au><au>Wang, Feng Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-01-18</date><risdate>2021</risdate><volume>133</volume><issue>3</issue><spage>1232</spage><epage>1239</epage><pages>1232-1239</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV. Here we report the design, identification and evolution of an air‐stable surface [bipy‐RuII(CO)2Cl2] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy‐RuIIICl4]− with simultaneous ligand exchange from Cl− to CO. This structural evolution was witnessed by a combination of in situ X‐ray and infrared spectroscopy studies. The [bipy‐RuII(CO)2Cl2] site enables oxidation of CO with a turnover frequency of 0.73×10−2 s−1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure–activity relationship by demonstrating a practical control over both geometric and electronic structures of single‐site catalysts at molecular level.
An air‐stable surface [bipy‐RuII(CO)2Cl2] single site is designed towards CO oxidation, while all other RuIII single sites are not active. The methodology is further extended to nine transition‐metal single‐site systems, enabling the use of surface coordination chemistry in heterogeneous catalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202008370</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2100-4310</orcidid><orcidid>https://orcid.org/0000-0002-2475-606X</orcidid><orcidid>https://orcid.org/0000-0002-7839-3786</orcidid><orcidid>https://orcid.org/0000-0002-1235-686X</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-9325-7571</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2021-01, Vol.133 (3), p.1232-1239 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2476858718 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon monoxide Catalysis Catalysts Chemistry Evolution heterogeneous catalysis Infrared spectroscopy Oxidation Ruthenium ruthenium(II/III) complexes single site surface coordination chemistry X-ray absorption spectroscopy |
title | Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Identification,%20and%20Evolution%20of%20a%20Surface%20Ruthenium(II/III)%20Single%20Site%20for%20CO%20Activation&rft.jtitle=Angewandte%20Chemie&rft.au=Kang,%20Liqun&rft.date=2021-01-18&rft.volume=133&rft.issue=3&rft.spage=1232&rft.epage=1239&rft.pages=1232-1239&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202008370&rft_dat=%3Cproquest_cross%3E2476858718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476858718&rft_id=info:pmid/&rfr_iscdi=true |