Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study

In the present work, magnetocaloric properties of FM/AFM core/shell nanoparticles have been studied by using detailed Monte Carlo simulations. Thermal variation of isothermal magnetic entropy change of the core, shell, interface part and total nanoparticle with a spherical shape for various magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2021, Vol.94 (1), Article 4
Hauptverfasser: Vatansever, Erol, Yüksel, Yusuf, Vatansever, Zeynep Demir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 94
creator Vatansever, Erol
Yüksel, Yusuf
Vatansever, Zeynep Demir
description In the present work, magnetocaloric properties of FM/AFM core/shell nanoparticles have been studied by using detailed Monte Carlo simulations. Thermal variation of isothermal magnetic entropy change of the core, shell, interface part and total nanoparticle with a spherical shape for various magnetic fields strengths have been examined. Also, dependence of the isothermal magnetic entropy change on the size and geometry of the nanoparticle has been analysed by considering the variation of the shape of the nanoparticle from oblate and prolate to a spherical one. Moreover, for the same shape evolution, cooling capacity ( q ) and maximum value of the entropy change have been presented as a function of applied magnetic field. Maximum value of the isothermal magnetic entropy change has been shown to take larger values as the applied magnetic field increases. Our numerical results suggest a linear relationship as q ∼ b h max between cooling capacity and magnetic field which is in accordance with the recent studies. A scaling behaviour as | Δ S M | max ∼ h max c has also been obtained between maximum value of the magnetic entropy change and magnetic field. Graphic abstract
doi_str_mv 10.1140/epjb/s10051-020-00009-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2476856552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650811255</galeid><sourcerecordid>A650811255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-240f25c75da616f92c8715f468980ae3bef8502af5e88d68c67b16e6c1bf64ab3</originalsourceid><addsrcrecordid>eNqFkUFv2yAUx62pk5Zm-wxD2mkHJ4ABk92iqFkjNZq0rbdKCJNH6sgBD7DUfPuRumqVU-HAE_r94D39i-IrwTNCGJ5Df2jmkWDMSYkpLnFei7L6UEwIq1gpcCWuXmsqPxXXMR4yQwRhk-Jhq_cOkje686E1qA--h5BaiMhbtN7Ol-stMj7APD5C1yGnne91BkwH8QfSaOtdArTSofMotseh06n1DsU07E6fi49WdxG-vJzT4n5983d1W979-rlZLe9Kw3CdSsqwpdzUfKcFEXZBjawJt0zIhcQaqgas5Jhqy0HKnZBG1A0RIAxprGC6qabFt_Hd3P2_AWJSBz8El79UlNVCcsE5zdRspPa6A9U661PQJu8dHFvjHdg23y8Fx5IQynkWvl8I5jzqU9rrIUa1-fP7kq1H1gQfYwCr-tAedTgpgtU5J3XOSY05qZyTes5JVdmUoxmz4fYQ3pp_T_0PdnmYJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476856552</pqid></control><display><type>article</type><title>Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study</title><source>Springer Nature - Complete Springer Journals</source><creator>Vatansever, Erol ; Yüksel, Yusuf ; Vatansever, Zeynep Demir</creator><creatorcontrib>Vatansever, Erol ; Yüksel, Yusuf ; Vatansever, Zeynep Demir</creatorcontrib><description>In the present work, magnetocaloric properties of FM/AFM core/shell nanoparticles have been studied by using detailed Monte Carlo simulations. Thermal variation of isothermal magnetic entropy change of the core, shell, interface part and total nanoparticle with a spherical shape for various magnetic fields strengths have been examined. Also, dependence of the isothermal magnetic entropy change on the size and geometry of the nanoparticle has been analysed by considering the variation of the shape of the nanoparticle from oblate and prolate to a spherical one. Moreover, for the same shape evolution, cooling capacity ( q ) and maximum value of the entropy change have been presented as a function of applied magnetic field. Maximum value of the isothermal magnetic entropy change has been shown to take larger values as the applied magnetic field increases. Our numerical results suggest a linear relationship as q ∼ b h max between cooling capacity and magnetic field which is in accordance with the recent studies. A scaling behaviour as | Δ S M | max ∼ h max c has also been obtained between maximum value of the magnetic entropy change and magnetic field. Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-020-00009-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Complex Systems ; Condensed Matter Physics ; Cooling ; Core-shell particles ; Entropy ; Fluid- and Aerodynamics ; Magnetic fields ; Magnetic properties ; Magnetism ; Monte Carlo method ; Monte Carlo simulation ; Nanoparticles ; Physics ; Physics and Astronomy ; Regular Article - Statistical and Nonlinear Physics ; Solid State Physics ; Thermal simulation</subject><ispartof>The European physical journal. B, Condensed matter physics, 2021, Vol.94 (1), Article 4</ispartof><rights>EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-240f25c75da616f92c8715f468980ae3bef8502af5e88d68c67b16e6c1bf64ab3</citedby><cites>FETCH-LOGICAL-c407t-240f25c75da616f92c8715f468980ae3bef8502af5e88d68c67b16e6c1bf64ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-020-00009-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-020-00009-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vatansever, Erol</creatorcontrib><creatorcontrib>Yüksel, Yusuf</creatorcontrib><creatorcontrib>Vatansever, Zeynep Demir</creatorcontrib><title>Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>In the present work, magnetocaloric properties of FM/AFM core/shell nanoparticles have been studied by using detailed Monte Carlo simulations. Thermal variation of isothermal magnetic entropy change of the core, shell, interface part and total nanoparticle with a spherical shape for various magnetic fields strengths have been examined. Also, dependence of the isothermal magnetic entropy change on the size and geometry of the nanoparticle has been analysed by considering the variation of the shape of the nanoparticle from oblate and prolate to a spherical one. Moreover, for the same shape evolution, cooling capacity ( q ) and maximum value of the entropy change have been presented as a function of applied magnetic field. Maximum value of the isothermal magnetic entropy change has been shown to take larger values as the applied magnetic field increases. Our numerical results suggest a linear relationship as q ∼ b h max between cooling capacity and magnetic field which is in accordance with the recent studies. A scaling behaviour as | Δ S M | max ∼ h max c has also been obtained between maximum value of the magnetic entropy change and magnetic field. Graphic abstract</description><subject>Analysis</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Core-shell particles</subject><subject>Entropy</subject><subject>Fluid- and Aerodynamics</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article - Statistical and Nonlinear Physics</subject><subject>Solid State Physics</subject><subject>Thermal simulation</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv2yAUx62pk5Zm-wxD2mkHJ4ABk92iqFkjNZq0rbdKCJNH6sgBD7DUfPuRumqVU-HAE_r94D39i-IrwTNCGJ5Df2jmkWDMSYkpLnFei7L6UEwIq1gpcCWuXmsqPxXXMR4yQwRhk-Jhq_cOkje686E1qA--h5BaiMhbtN7Ol-stMj7APD5C1yGnne91BkwH8QfSaOtdArTSofMotseh06n1DsU07E6fi49WdxG-vJzT4n5983d1W979-rlZLe9Kw3CdSsqwpdzUfKcFEXZBjawJt0zIhcQaqgas5Jhqy0HKnZBG1A0RIAxprGC6qabFt_Hd3P2_AWJSBz8El79UlNVCcsE5zdRspPa6A9U661PQJu8dHFvjHdg23y8Fx5IQynkWvl8I5jzqU9rrIUa1-fP7kq1H1gQfYwCr-tAedTgpgtU5J3XOSY05qZyTes5JVdmUoxmz4fYQ3pp_T_0PdnmYJw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Vatansever, Erol</creator><creator>Yüksel, Yusuf</creator><creator>Vatansever, Zeynep Demir</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2021</creationdate><title>Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study</title><author>Vatansever, Erol ; Yüksel, Yusuf ; Vatansever, Zeynep Demir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-240f25c75da616f92c8715f468980ae3bef8502af5e88d68c67b16e6c1bf64ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Core-shell particles</topic><topic>Entropy</topic><topic>Fluid- and Aerodynamics</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article - Statistical and Nonlinear Physics</topic><topic>Solid State Physics</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatansever, Erol</creatorcontrib><creatorcontrib>Yüksel, Yusuf</creatorcontrib><creatorcontrib>Vatansever, Zeynep Demir</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatansever, Erol</au><au>Yüksel, Yusuf</au><au>Vatansever, Zeynep Demir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2021</date><risdate>2021</risdate><volume>94</volume><issue>1</issue><artnum>4</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>In the present work, magnetocaloric properties of FM/AFM core/shell nanoparticles have been studied by using detailed Monte Carlo simulations. Thermal variation of isothermal magnetic entropy change of the core, shell, interface part and total nanoparticle with a spherical shape for various magnetic fields strengths have been examined. Also, dependence of the isothermal magnetic entropy change on the size and geometry of the nanoparticle has been analysed by considering the variation of the shape of the nanoparticle from oblate and prolate to a spherical one. Moreover, for the same shape evolution, cooling capacity ( q ) and maximum value of the entropy change have been presented as a function of applied magnetic field. Maximum value of the isothermal magnetic entropy change has been shown to take larger values as the applied magnetic field increases. Our numerical results suggest a linear relationship as q ∼ b h max between cooling capacity and magnetic field which is in accordance with the recent studies. A scaling behaviour as | Δ S M | max ∼ h max c has also been obtained between maximum value of the magnetic entropy change and magnetic field. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-020-00009-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2021, Vol.94 (1), Article 4
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2476856552
source Springer Nature - Complete Springer Journals
subjects Analysis
Complex Systems
Condensed Matter Physics
Cooling
Core-shell particles
Entropy
Fluid- and Aerodynamics
Magnetic fields
Magnetic properties
Magnetism
Monte Carlo method
Monte Carlo simulation
Nanoparticles
Physics
Physics and Astronomy
Regular Article - Statistical and Nonlinear Physics
Solid State Physics
Thermal simulation
title Magnetocaloric properties of FM/AFM core/shell nanoparticles: a Monte Carlo simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetocaloric%20properties%20of%20FM/AFM%20core/shell%20nanoparticles:%20a%20Monte%20Carlo%20simulation%20study&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Vatansever,%20Erol&rft.date=2021&rft.volume=94&rft.issue=1&rft.artnum=4&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-020-00009-3&rft_dat=%3Cgale_proqu%3EA650811255%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476856552&rft_id=info:pmid/&rft_galeid=A650811255&rfr_iscdi=true