The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-02, Vol.39 (8), p.1652-1664
Hauptverfasser: Thomsen, Martin K., Skouboe, Morten K., Boularan, Cedric, Vernejoul, Fabienne, Lioux, Thierry, Leknes, Siv L., Berthelsen, Martin F., Riedel, Maria, Cai, Huiqiang, Joseph, Justin V., Perouzel, Eric, Tiraby, Michele, Vendelbo, Mikkel H., Paludan, Søren R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1664
container_issue 8
container_start_page 1652
container_title Oncogene
container_volume 39
creator Thomsen, Martin K.
Skouboe, Morten K.
Boularan, Cedric
Vernejoul, Fabienne
Lioux, Thierry
Leknes, Siv L.
Berthelsen, Martin F.
Riedel, Maria
Cai, Huiqiang
Joseph, Justin V.
Perouzel, Eric
Tiraby, Michele
Vendelbo, Mikkel H.
Paludan, Søren R.
description Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of targeting the DNA-activated STING pathway in HCC. STING-deficient mice exhibited unaltered initial development of HCC, but had higher number of large tumors at late stages of disease. In the liver of STING-deficient HCC mice, we observed reduced levels of phospho-STAT1, autophagy, and cleaved caspase3. These responses were activated in the liver by treatment with a cyclic dinucleotide (CDN) STING agonist. Importantly, CDN treatment of mice after HCC development efficiently reduced tumor size. Initiation of CDN treatment at an even later stage of disease to allow HCC detection by MR scanning revealed that the majority of tumors regressed in response to CDN, but new tumors were also detected, which were unresponsive to CDN treatment. Overall, the modulation of the STING pathway affects the development of HCC, and holds promise for a use as a treatment of this disease, most likely in combination with other immunomodulatory treatments such as PD1 inhibitors or with standard of care.
doi_str_mv 10.1038/s41388-019-1108-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2476762108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618257372</galeid><sourcerecordid>A618257372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-155ae1824ba35dddb660264b13e6142b886a9d52b84e63ca3e88ce678b46e6393</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6A9xIwHXGvCu1bAZtBwZdTLsOt1K3ujPUy6QKmX9vmh4dBJUsEk6-c3NzDyFvBb8SXLkPWQvlHOOiZkJwx9wzshG6ssyYWj8nG14bzmqp5AV5lfM957yquXxJLpSoNK-c3BDYH5GG3faO3e1vvuzoDMvxBzzQmCnQ5YgJZlyXGOgC6YALjWPR54Shj2MM0NNharGnU0ePWLxTwL5fe0g0QApxnAZ4TV500Gd887hfkm-fPu6vP7Pbr7ub6-0tC0aphQljAIWTugFl2rZtrOXS6kYotELLxjkLdWvKQaNVARQ6F9BWrtG2CLW6JO_Pdec0fV8xL_5-WtNYnvSyzKSysozov5QytbJOCPFEHaBHH8duWhKEIebgt7Y0aSpVyUJd_YUqq8UhhmnELhb9D4M4G0Kack7Y-TnFAdKDF9yfEvXnRH1J1J8S9aeG3z02vDYDtr8dvyIsgDwDuVyNB0xPP_p31Z_Lrafh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359368111</pqid></control><display><type>article</type><title>The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Thomsen, Martin K. ; Skouboe, Morten K. ; Boularan, Cedric ; Vernejoul, Fabienne ; Lioux, Thierry ; Leknes, Siv L. ; Berthelsen, Martin F. ; Riedel, Maria ; Cai, Huiqiang ; Joseph, Justin V. ; Perouzel, Eric ; Tiraby, Michele ; Vendelbo, Mikkel H. ; Paludan, Søren R.</creator><creatorcontrib>Thomsen, Martin K. ; Skouboe, Morten K. ; Boularan, Cedric ; Vernejoul, Fabienne ; Lioux, Thierry ; Leknes, Siv L. ; Berthelsen, Martin F. ; Riedel, Maria ; Cai, Huiqiang ; Joseph, Justin V. ; Perouzel, Eric ; Tiraby, Michele ; Vendelbo, Mikkel H. ; Paludan, Søren R.</creatorcontrib><description>Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of targeting the DNA-activated STING pathway in HCC. STING-deficient mice exhibited unaltered initial development of HCC, but had higher number of large tumors at late stages of disease. In the liver of STING-deficient HCC mice, we observed reduced levels of phospho-STAT1, autophagy, and cleaved caspase3. These responses were activated in the liver by treatment with a cyclic dinucleotide (CDN) STING agonist. Importantly, CDN treatment of mice after HCC development efficiently reduced tumor size. Initiation of CDN treatment at an even later stage of disease to allow HCC detection by MR scanning revealed that the majority of tumors regressed in response to CDN, but new tumors were also detected, which were unresponsive to CDN treatment. Overall, the modulation of the STING pathway affects the development of HCC, and holds promise for a use as a treatment of this disease, most likely in combination with other immunomodulatory treatments such as PD1 inhibitors or with standard of care.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-1108-8</identifier><identifier>PMID: 31740782</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 59/36 ; 631/250/251 ; 631/67/70 ; 64/60 ; Animals ; Apoptosis ; Autophagy ; Cancer immunotherapy ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - immunology ; Carcinoma, Hepatocellular - metabolism ; Carcinoma, Hepatocellular - pathology ; Care and treatment ; Carrier proteins ; Cell Biology ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Development and progression ; Gene expression ; Genetic aspects ; Health aspects ; Hepatocellular carcinoma ; Hepatoma ; Human Genetics ; Humans ; Immunomodulation ; Immunotherapy ; Innovations ; Internal Medicine ; Liver cancer ; Liver diseases ; Liver Neoplasms - drug therapy ; Liver Neoplasms - immunology ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Male ; Medicine ; Medicine &amp; Public Health ; Membrane Proteins - agonists ; Membrane Proteins - metabolism ; Mice ; Molecular Targeted Therapy ; Nucleotidyltransferases - metabolism ; Oncology ; PD-1 protein ; Phagocytosis ; Signal Transduction - drug effects ; Stat1 protein ; Therapeutic applications ; Tumor Burden - drug effects ; Tumors</subject><ispartof>Oncogene, 2020-02, Vol.39 (8), p.1652-1664</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-155ae1824ba35dddb660264b13e6142b886a9d52b84e63ca3e88ce678b46e6393</citedby><cites>FETCH-LOGICAL-c533t-155ae1824ba35dddb660264b13e6142b886a9d52b84e63ca3e88ce678b46e6393</cites><orcidid>0000-0002-5055-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31740782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomsen, Martin K.</creatorcontrib><creatorcontrib>Skouboe, Morten K.</creatorcontrib><creatorcontrib>Boularan, Cedric</creatorcontrib><creatorcontrib>Vernejoul, Fabienne</creatorcontrib><creatorcontrib>Lioux, Thierry</creatorcontrib><creatorcontrib>Leknes, Siv L.</creatorcontrib><creatorcontrib>Berthelsen, Martin F.</creatorcontrib><creatorcontrib>Riedel, Maria</creatorcontrib><creatorcontrib>Cai, Huiqiang</creatorcontrib><creatorcontrib>Joseph, Justin V.</creatorcontrib><creatorcontrib>Perouzel, Eric</creatorcontrib><creatorcontrib>Tiraby, Michele</creatorcontrib><creatorcontrib>Vendelbo, Mikkel H.</creatorcontrib><creatorcontrib>Paludan, Søren R.</creatorcontrib><title>The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of targeting the DNA-activated STING pathway in HCC. STING-deficient mice exhibited unaltered initial development of HCC, but had higher number of large tumors at late stages of disease. In the liver of STING-deficient HCC mice, we observed reduced levels of phospho-STAT1, autophagy, and cleaved caspase3. These responses were activated in the liver by treatment with a cyclic dinucleotide (CDN) STING agonist. Importantly, CDN treatment of mice after HCC development efficiently reduced tumor size. Initiation of CDN treatment at an even later stage of disease to allow HCC detection by MR scanning revealed that the majority of tumors regressed in response to CDN, but new tumors were also detected, which were unresponsive to CDN treatment. Overall, the modulation of the STING pathway affects the development of HCC, and holds promise for a use as a treatment of this disease, most likely in combination with other immunomodulatory treatments such as PD1 inhibitors or with standard of care.</description><subject>13/51</subject><subject>59/36</subject><subject>631/250/251</subject><subject>631/67/70</subject><subject>64/60</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Cancer immunotherapy</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - immunology</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Care and treatment</subject><subject>Carrier proteins</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic</subject><subject>Development and progression</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunomodulation</subject><subject>Immunotherapy</subject><subject>Innovations</subject><subject>Internal Medicine</subject><subject>Liver cancer</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - immunology</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane Proteins - agonists</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Molecular Targeted Therapy</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Oncology</subject><subject>PD-1 protein</subject><subject>Phagocytosis</subject><subject>Signal Transduction - drug effects</subject><subject>Stat1 protein</subject><subject>Therapeutic applications</subject><subject>Tumor Burden - drug effects</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUuLFDEUhYMoTjv6A9xIwHXGvCu1bAZtBwZdTLsOt1K3ujPUy6QKmX9vmh4dBJUsEk6-c3NzDyFvBb8SXLkPWQvlHOOiZkJwx9wzshG6ssyYWj8nG14bzmqp5AV5lfM957yquXxJLpSoNK-c3BDYH5GG3faO3e1vvuzoDMvxBzzQmCnQ5YgJZlyXGOgC6YALjWPR54Shj2MM0NNharGnU0ePWLxTwL5fe0g0QApxnAZ4TV500Gd887hfkm-fPu6vP7Pbr7ub6-0tC0aphQljAIWTugFl2rZtrOXS6kYotELLxjkLdWvKQaNVARQ6F9BWrtG2CLW6JO_Pdec0fV8xL_5-WtNYnvSyzKSysozov5QytbJOCPFEHaBHH8duWhKEIebgt7Y0aSpVyUJd_YUqq8UhhmnELhb9D4M4G0Kack7Y-TnFAdKDF9yfEvXnRH1J1J8S9aeG3z02vDYDtr8dvyIsgDwDuVyNB0xPP_p31Z_Lrafh</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Thomsen, Martin K.</creator><creator>Skouboe, Morten K.</creator><creator>Boularan, Cedric</creator><creator>Vernejoul, Fabienne</creator><creator>Lioux, Thierry</creator><creator>Leknes, Siv L.</creator><creator>Berthelsen, Martin F.</creator><creator>Riedel, Maria</creator><creator>Cai, Huiqiang</creator><creator>Joseph, Justin V.</creator><creator>Perouzel, Eric</creator><creator>Tiraby, Michele</creator><creator>Vendelbo, Mikkel H.</creator><creator>Paludan, Søren R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5055-7531</orcidid></search><sort><creationdate>20200201</creationdate><title>The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma</title><author>Thomsen, Martin K. ; Skouboe, Morten K. ; Boularan, Cedric ; Vernejoul, Fabienne ; Lioux, Thierry ; Leknes, Siv L. ; Berthelsen, Martin F. ; Riedel, Maria ; Cai, Huiqiang ; Joseph, Justin V. ; Perouzel, Eric ; Tiraby, Michele ; Vendelbo, Mikkel H. ; Paludan, Søren R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-155ae1824ba35dddb660264b13e6142b886a9d52b84e63ca3e88ce678b46e6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>59/36</topic><topic>631/250/251</topic><topic>631/67/70</topic><topic>64/60</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Cancer immunotherapy</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - immunology</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Care and treatment</topic><topic>Carrier proteins</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic</topic><topic>Development and progression</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunomodulation</topic><topic>Immunotherapy</topic><topic>Innovations</topic><topic>Internal Medicine</topic><topic>Liver cancer</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - immunology</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane Proteins - agonists</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Molecular Targeted Therapy</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Oncology</topic><topic>PD-1 protein</topic><topic>Phagocytosis</topic><topic>Signal Transduction - drug effects</topic><topic>Stat1 protein</topic><topic>Therapeutic applications</topic><topic>Tumor Burden - drug effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomsen, Martin K.</creatorcontrib><creatorcontrib>Skouboe, Morten K.</creatorcontrib><creatorcontrib>Boularan, Cedric</creatorcontrib><creatorcontrib>Vernejoul, Fabienne</creatorcontrib><creatorcontrib>Lioux, Thierry</creatorcontrib><creatorcontrib>Leknes, Siv L.</creatorcontrib><creatorcontrib>Berthelsen, Martin F.</creatorcontrib><creatorcontrib>Riedel, Maria</creatorcontrib><creatorcontrib>Cai, Huiqiang</creatorcontrib><creatorcontrib>Joseph, Justin V.</creatorcontrib><creatorcontrib>Perouzel, Eric</creatorcontrib><creatorcontrib>Tiraby, Michele</creatorcontrib><creatorcontrib>Vendelbo, Mikkel H.</creatorcontrib><creatorcontrib>Paludan, Søren R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomsen, Martin K.</au><au>Skouboe, Morten K.</au><au>Boularan, Cedric</au><au>Vernejoul, Fabienne</au><au>Lioux, Thierry</au><au>Leknes, Siv L.</au><au>Berthelsen, Martin F.</au><au>Riedel, Maria</au><au>Cai, Huiqiang</au><au>Joseph, Justin V.</au><au>Perouzel, Eric</au><au>Tiraby, Michele</au><au>Vendelbo, Mikkel H.</au><au>Paludan, Søren R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>39</volume><issue>8</issue><spage>1652</spage><epage>1664</epage><pages>1652-1664</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of targeting the DNA-activated STING pathway in HCC. STING-deficient mice exhibited unaltered initial development of HCC, but had higher number of large tumors at late stages of disease. In the liver of STING-deficient HCC mice, we observed reduced levels of phospho-STAT1, autophagy, and cleaved caspase3. These responses were activated in the liver by treatment with a cyclic dinucleotide (CDN) STING agonist. Importantly, CDN treatment of mice after HCC development efficiently reduced tumor size. Initiation of CDN treatment at an even later stage of disease to allow HCC detection by MR scanning revealed that the majority of tumors regressed in response to CDN, but new tumors were also detected, which were unresponsive to CDN treatment. Overall, the modulation of the STING pathway affects the development of HCC, and holds promise for a use as a treatment of this disease, most likely in combination with other immunomodulatory treatments such as PD1 inhibitors or with standard of care.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31740782</pmid><doi>10.1038/s41388-019-1108-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5055-7531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2020-02, Vol.39 (8), p.1652-1664
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_journals_2476762108
source MEDLINE; Alma/SFX Local Collection
subjects 13/51
59/36
631/250/251
631/67/70
64/60
Animals
Apoptosis
Autophagy
Cancer immunotherapy
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - immunology
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
Care and treatment
Carrier proteins
Cell Biology
Cell Line, Tumor
Cell Transformation, Neoplastic
Development and progression
Gene expression
Genetic aspects
Health aspects
Hepatocellular carcinoma
Hepatoma
Human Genetics
Humans
Immunomodulation
Immunotherapy
Innovations
Internal Medicine
Liver cancer
Liver diseases
Liver Neoplasms - drug therapy
Liver Neoplasms - immunology
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Male
Medicine
Medicine & Public Health
Membrane Proteins - agonists
Membrane Proteins - metabolism
Mice
Molecular Targeted Therapy
Nucleotidyltransferases - metabolism
Oncology
PD-1 protein
Phagocytosis
Signal Transduction - drug effects
Stat1 protein
Therapeutic applications
Tumor Burden - drug effects
Tumors
title The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cGAS-STING%20pathway%20is%20a%20therapeutic%20target%20in%20a%20preclinical%20model%20of%20hepatocellular%20carcinoma&rft.jtitle=Oncogene&rft.au=Thomsen,%20Martin%20K.&rft.date=2020-02-01&rft.volume=39&rft.issue=8&rft.spage=1652&rft.epage=1664&rft.pages=1652-1664&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-1108-8&rft_dat=%3Cgale_proqu%3EA618257372%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359368111&rft_id=info:pmid/31740782&rft_galeid=A618257372&rfr_iscdi=true