Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean
Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO 2 ( p CO 2 ). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer p CO 2 in the Canada Basin increased at twice the rate of atmospheri...
Gespeichert in:
Veröffentlicht in: | Nature climate change 2020-07, Vol.10 (7), p.678-684 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 7 |
container_start_page | 678 |
container_title | Nature climate change |
container_volume | 10 |
creator | Ouyang, Zhangxian Qi, Di Chen, Liqi Takahashi, Taro Zhong, Wenli DeGrandpre, Michael D. Chen, Baoshan Gao, Zhongyong Nishino, Shigeto Murata, Akihiko Sun, Heng Robbins, Lisa L. Jin, Meibing Cai, Wei-Jun |
description | Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO
2
(
p
CO
2
). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer
p
CO
2
in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the
p
CO
2
seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO
2
gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant
p
CO
2
increase on the Chukchi Shelf, where strong and increasing biological uptake has held
p
CO
2
low, and thus the CO
2
sink has increased and may increase further due to the atmospheric CO
2
increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface
p
CO
2
variations and trends in response to climate change in the Arctic Ocean.
Surface CO
2
concentrations in the western Arctic Ocean differ due to local processes. During the period 1994–2017, the Canada Basin has shown rapid increases as warming and ice loss enhance air–sea exchange of CO
2
, whereas the Chukchi Shelf has strong biological activity, resulting in a CO
2
sink. |
doi_str_mv | 10.1038/s41558-020-0784-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476755642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419204596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3252-f59bb81c44d7d0aca6339fc5fe17e2124d14cb8a8a707b411228f27f8315e6003</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWGp_gG8Bn1cz2dz2sRRvUCh4Ad9CNjvRLd1tTbaI_96UFX3SeZlhOOfM8BFyDuwSWGmukgApTcE4K5g2ouBHZAI6b5SuzPHPbF5OySylNculQZWqmpCHR3RF65FutilR1-02bWgx0bTvOoxD2yFt0LvGbehixWnb-4guYR7o8Ib0A9OAsafz6IfW05VH15-Rk-A2CWfffUqeb66fFnfFcnV7v5gvC19yyYsgq7o24IVodMOcd6osq-BlQNDIgYsGhK-NM04zXQsAzk3gOpgSJCrGyim5GHN3cfu-z4_Y9XYf-3zScqGVllIJ_r8KKs6ErFRWwajyMXOIGOwutp2LnxaYPTC2I2ObGdsDY3tI5qMnZW3_ivE3-W_TF8wHfEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419204596</pqid></control><display><type>article</type><title>Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean</title><source>Nature</source><source>Springer Online Journals - JUSTICE</source><creator>Ouyang, Zhangxian ; Qi, Di ; Chen, Liqi ; Takahashi, Taro ; Zhong, Wenli ; DeGrandpre, Michael D. ; Chen, Baoshan ; Gao, Zhongyong ; Nishino, Shigeto ; Murata, Akihiko ; Sun, Heng ; Robbins, Lisa L. ; Jin, Meibing ; Cai, Wei-Jun</creator><creatorcontrib>Ouyang, Zhangxian ; Qi, Di ; Chen, Liqi ; Takahashi, Taro ; Zhong, Wenli ; DeGrandpre, Michael D. ; Chen, Baoshan ; Gao, Zhongyong ; Nishino, Shigeto ; Murata, Akihiko ; Sun, Heng ; Robbins, Lisa L. ; Jin, Meibing ; Cai, Wei-Jun</creatorcontrib><description>Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO
2
(
p
CO
2
). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer
p
CO
2
in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the
p
CO
2
seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO
2
gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant
p
CO
2
increase on the Chukchi Shelf, where strong and increasing biological uptake has held
p
CO
2
low, and thus the CO
2
sink has increased and may increase further due to the atmospheric CO
2
increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface
p
CO
2
variations and trends in response to climate change in the Arctic Ocean.
Surface CO
2
concentrations in the western Arctic Ocean differ due to local processes. During the period 1994–2017, the Canada Basin has shown rapid increases as warming and ice loss enhance air–sea exchange of CO
2
, whereas the Chukchi Shelf has strong biological activity, resulting in a CO
2
sink.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-020-0784-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/694/2739 ; 704/106/829 ; 704/829/827 ; Ablation ; Arctic climate changes ; Arctic climates ; Biological activity ; Biological effects ; Biological uptake ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon dioxide concentration ; Carbon dioxide exchange ; Climate Change ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Environment ; Environmental Law/Policy/Ecojustice ; Global warming ; Ice ; Ocean warming ; Oceans ; Partial pressure ; Sea ice ; Sea surface ; Summer ; Trends</subject><ispartof>Nature climate change, 2020-07, Vol.10 (7), p.678-684</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3252-f59bb81c44d7d0aca6339fc5fe17e2124d14cb8a8a707b411228f27f8315e6003</citedby><cites>FETCH-LOGICAL-c3252-f59bb81c44d7d0aca6339fc5fe17e2124d14cb8a8a707b411228f27f8315e6003</cites><orcidid>0000-0002-7001-215X ; 0000-0003-3681-1094 ; 0000-0003-3606-8325 ; 0000-0002-0173-0377 ; 0000-0002-0560-241X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-020-0784-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-020-0784-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ouyang, Zhangxian</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Chen, Liqi</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Zhong, Wenli</creatorcontrib><creatorcontrib>DeGrandpre, Michael D.</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Gao, Zhongyong</creatorcontrib><creatorcontrib>Nishino, Shigeto</creatorcontrib><creatorcontrib>Murata, Akihiko</creatorcontrib><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Robbins, Lisa L.</creatorcontrib><creatorcontrib>Jin, Meibing</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><title>Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><description>Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO
2
(
p
CO
2
). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer
p
CO
2
in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the
p
CO
2
seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO
2
gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant
p
CO
2
increase on the Chukchi Shelf, where strong and increasing biological uptake has held
p
CO
2
low, and thus the CO
2
sink has increased and may increase further due to the atmospheric CO
2
increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface
p
CO
2
variations and trends in response to climate change in the Arctic Ocean.
Surface CO
2
concentrations in the western Arctic Ocean differ due to local processes. During the period 1994–2017, the Canada Basin has shown rapid increases as warming and ice loss enhance air–sea exchange of CO
2
, whereas the Chukchi Shelf has strong biological activity, resulting in a CO
2
sink.</description><subject>704/106/694/2739</subject><subject>704/106/829</subject><subject>704/829/827</subject><subject>Ablation</subject><subject>Arctic climate changes</subject><subject>Arctic climates</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biological uptake</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide concentration</subject><subject>Carbon dioxide exchange</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Global warming</subject><subject>Ice</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Partial pressure</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Summer</subject><subject>Trends</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kFtLAzEQhYMoWGp_gG8Bn1cz2dz2sRRvUCh4Ad9CNjvRLd1tTbaI_96UFX3SeZlhOOfM8BFyDuwSWGmukgApTcE4K5g2ouBHZAI6b5SuzPHPbF5OySylNculQZWqmpCHR3RF65FutilR1-02bWgx0bTvOoxD2yFt0LvGbehixWnb-4guYR7o8Ib0A9OAsafz6IfW05VH15-Rk-A2CWfffUqeb66fFnfFcnV7v5gvC19yyYsgq7o24IVodMOcd6osq-BlQNDIgYsGhK-NM04zXQsAzk3gOpgSJCrGyim5GHN3cfu-z4_Y9XYf-3zScqGVllIJ_r8KKs6ErFRWwajyMXOIGOwutp2LnxaYPTC2I2ObGdsDY3tI5qMnZW3_ivE3-W_TF8wHfEk</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Ouyang, Zhangxian</creator><creator>Qi, Di</creator><creator>Chen, Liqi</creator><creator>Takahashi, Taro</creator><creator>Zhong, Wenli</creator><creator>DeGrandpre, Michael D.</creator><creator>Chen, Baoshan</creator><creator>Gao, Zhongyong</creator><creator>Nishino, Shigeto</creator><creator>Murata, Akihiko</creator><creator>Sun, Heng</creator><creator>Robbins, Lisa L.</creator><creator>Jin, Meibing</creator><creator>Cai, Wei-Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7001-215X</orcidid><orcidid>https://orcid.org/0000-0003-3681-1094</orcidid><orcidid>https://orcid.org/0000-0003-3606-8325</orcidid><orcidid>https://orcid.org/0000-0002-0173-0377</orcidid><orcidid>https://orcid.org/0000-0002-0560-241X</orcidid></search><sort><creationdate>20200701</creationdate><title>Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean</title><author>Ouyang, Zhangxian ; Qi, Di ; Chen, Liqi ; Takahashi, Taro ; Zhong, Wenli ; DeGrandpre, Michael D. ; Chen, Baoshan ; Gao, Zhongyong ; Nishino, Shigeto ; Murata, Akihiko ; Sun, Heng ; Robbins, Lisa L. ; Jin, Meibing ; Cai, Wei-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3252-f59bb81c44d7d0aca6339fc5fe17e2124d14cb8a8a707b411228f27f8315e6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/106/694/2739</topic><topic>704/106/829</topic><topic>704/829/827</topic><topic>Ablation</topic><topic>Arctic climate changes</topic><topic>Arctic climates</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biological uptake</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide concentration</topic><topic>Carbon dioxide exchange</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Global warming</topic><topic>Ice</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Partial pressure</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Summer</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Zhangxian</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Chen, Liqi</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Zhong, Wenli</creatorcontrib><creatorcontrib>DeGrandpre, Michael D.</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Gao, Zhongyong</creatorcontrib><creatorcontrib>Nishino, Shigeto</creatorcontrib><creatorcontrib>Murata, Akihiko</creatorcontrib><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Robbins, Lisa L.</creatorcontrib><creatorcontrib>Jin, Meibing</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Zhangxian</au><au>Qi, Di</au><au>Chen, Liqi</au><au>Takahashi, Taro</au><au>Zhong, Wenli</au><au>DeGrandpre, Michael D.</au><au>Chen, Baoshan</au><au>Gao, Zhongyong</au><au>Nishino, Shigeto</au><au>Murata, Akihiko</au><au>Sun, Heng</au><au>Robbins, Lisa L.</au><au>Jin, Meibing</au><au>Cai, Wei-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>678</spage><epage>684</epage><pages>678-684</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO
2
(
p
CO
2
). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer
p
CO
2
in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the
p
CO
2
seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO
2
gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant
p
CO
2
increase on the Chukchi Shelf, where strong and increasing biological uptake has held
p
CO
2
low, and thus the CO
2
sink has increased and may increase further due to the atmospheric CO
2
increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface
p
CO
2
variations and trends in response to climate change in the Arctic Ocean.
Surface CO
2
concentrations in the western Arctic Ocean differ due to local processes. During the period 1994–2017, the Canada Basin has shown rapid increases as warming and ice loss enhance air–sea exchange of CO
2
, whereas the Chukchi Shelf has strong biological activity, resulting in a CO
2
sink.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-020-0784-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7001-215X</orcidid><orcidid>https://orcid.org/0000-0003-3681-1094</orcidid><orcidid>https://orcid.org/0000-0003-3606-8325</orcidid><orcidid>https://orcid.org/0000-0002-0173-0377</orcidid><orcidid>https://orcid.org/0000-0002-0560-241X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2020-07, Vol.10 (7), p.678-684 |
issn | 1758-678X 1758-6798 |
language | eng |
recordid | cdi_proquest_journals_2476755642 |
source | Nature; Springer Online Journals - JUSTICE |
subjects | 704/106/694/2739 704/106/829 704/829/827 Ablation Arctic climate changes Arctic climates Biological activity Biological effects Biological uptake Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide concentration Carbon dioxide exchange Climate Change Climate Change/Climate Change Impacts Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Global warming Ice Ocean warming Oceans Partial pressure Sea ice Sea surface Summer Trends |
title | Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea-ice%20loss%20amplifies%20summertime%20decadal%20CO2%20increase%20in%20the%20western%20Arctic%20Ocean&rft.jtitle=Nature%20climate%20change&rft.au=Ouyang,%20Zhangxian&rft.date=2020-07-01&rft.volume=10&rft.issue=7&rft.spage=678&rft.epage=684&rft.pages=678-684&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-020-0784-2&rft_dat=%3Cproquest_cross%3E2419204596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419204596&rft_id=info:pmid/&rfr_iscdi=true |