Benchmarking single-cell RNA-sequencing protocols for cell atlas projects

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2020-06, Vol.38 (6), p.747-755
Hauptverfasser: Mereu, Elisabetta, Lafzi, Atefeh, Moutinho, Catia, Ziegenhain, Christoph, McCarthy, Davis J., Álvarez-Varela, Adrián, Batlle, Eduard, Sagar, Grün, Dominic, Lau, Julia K., Boutet, Stéphane C., Sanada, Chad, Ooi, Aik, Jones, Robert C., Kaihara, Kelly, Brampton, Chris, Talaga, Yasha, Sasagawa, Yohei, Tanaka, Kaori, Hayashi, Tetsutaro, Braeuning, Caroline, Fischer, Cornelius, Sauer, Sascha, Trefzer, Timo, Conrad, Christian, Adiconis, Xian, Nguyen, Lan T., Regev, Aviv, Levin, Joshua Z., Parekh, Swati, Janjic, Aleksandar, Wange, Lucas E., Bagnoli, Johannes W., Enard, Wolfgang, Gut, Marta, Sandberg, Rickard, Nikaido, Itoshi, Gut, Ivo, Stegle, Oliver, Heyn, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 6
container_start_page 747
container_title Nature biotechnology
container_volume 38
creator Mereu, Elisabetta
Lafzi, Atefeh
Moutinho, Catia
Ziegenhain, Christoph
McCarthy, Davis J.
Álvarez-Varela, Adrián
Batlle, Eduard
Sagar
Grün, Dominic
Lau, Julia K.
Boutet, Stéphane C.
Sanada, Chad
Ooi, Aik
Jones, Robert C.
Kaihara, Kelly
Brampton, Chris
Talaga, Yasha
Sasagawa, Yohei
Tanaka, Kaori
Hayashi, Tetsutaro
Braeuning, Caroline
Fischer, Cornelius
Sauer, Sascha
Trefzer, Timo
Conrad, Christian
Adiconis, Xian
Nguyen, Lan T.
Regev, Aviv
Levin, Joshua Z.
Parekh, Swati
Janjic, Aleksandar
Wange, Lucas E.
Bagnoli, Johannes W.
Enard, Wolfgang
Gut, Marta
Sandberg, Rickard
Nikaido, Itoshi
Gut, Ivo
Stegle, Oliver
Heyn, Holger
description Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas. A multicenter study compares 13 commonly used single-cell RNA-seq protocols.
doi_str_mv 10.1038/s41587-020-0469-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2476743887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411081426</sourcerecordid><originalsourceid>FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMotlY_gBdZ8Byd_JtNj7VULRQF0XNIstnaut2tm-3Bb2_WVrx5mQy8HzOT9wi5ZHDDQOjbKJnSOQUOFCSOqTwiQ6YkUoZjPE499CpTOCBnMa4BACXiKRkIrpiWIIZkfhdq_76x7ceqXmYxlSpQH6oqe3ma0Bg-d0nvpW3bdI1vqpiVTZv9ELarbOyFdfBdPCcnpa1iuDi8I_J2P3udPtLF88N8OlnQLYe8o7rE3DGP3jGliqBRBbCFE8pbUE6hlrpkpZIwzhUvWCmsFygLxx2mfzotRuR6PzctTtfFzqybXVunlYbLHHMptM7_p1gyhkmOibo6UDu3CYXZtqtkxZf59ScBfA_EJNXL0P6NYWD6EMw-BJOOM30IRopvzeN10Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411081426</pqid></control><display><type>article</type><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</creator><creatorcontrib>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas. A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0469-4</identifier><identifier>PMID: 32518403</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/514/1949 ; 631/61/212/2019 ; Agriculture ; Analysis ; Animals ; Benchmarking ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cell Line ; Colon ; Comparative analysis ; Consortia ; Databases, Genetic ; Datasets ; Design ; Efficiency ; Gene expression ; Gene sequencing ; Genomics ; Genomics - methods ; Genomics - standards ; Humans ; Impact prediction ; Laboratories ; Life Sciences ; Medical research ; Mice ; Molecular biology ; Organs ; Quality control ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - methods ; Sequence Analysis, RNA - standards ; Single-Cell Analysis - methods ; Single-Cell Analysis - standards</subject><ispartof>Nature biotechnology, 2020-06, Vol.38 (6), p.747-755</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</cites><orcidid>0000-0002-0170-3598 ; 0000-0003-2208-4877 ; 0000-0002-4826-1651 ; 0000-0001-7180-5381 ; 0000-0002-4056-0550 ; 0000-0002-3275-9156 ; 0000-0003-3293-3158 ; 0000-0002-7261-2570 ; 0000-0003-0329-2435 ; 0000-0001-7219-632X ; 0000-0001-6473-1740 ; 0000-0001-7235-9854 ; 0000-0002-3276-1889 ; 0000-0002-3364-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-020-0469-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-020-0469-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32518403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mereu, Elisabetta</creatorcontrib><creatorcontrib>Lafzi, Atefeh</creatorcontrib><creatorcontrib>Moutinho, Catia</creatorcontrib><creatorcontrib>Ziegenhain, Christoph</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Álvarez-Varela, Adrián</creatorcontrib><creatorcontrib>Batlle, Eduard</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Lau, Julia K.</creatorcontrib><creatorcontrib>Boutet, Stéphane C.</creatorcontrib><creatorcontrib>Sanada, Chad</creatorcontrib><creatorcontrib>Ooi, Aik</creatorcontrib><creatorcontrib>Jones, Robert C.</creatorcontrib><creatorcontrib>Kaihara, Kelly</creatorcontrib><creatorcontrib>Brampton, Chris</creatorcontrib><creatorcontrib>Talaga, Yasha</creatorcontrib><creatorcontrib>Sasagawa, Yohei</creatorcontrib><creatorcontrib>Tanaka, Kaori</creatorcontrib><creatorcontrib>Hayashi, Tetsutaro</creatorcontrib><creatorcontrib>Braeuning, Caroline</creatorcontrib><creatorcontrib>Fischer, Cornelius</creatorcontrib><creatorcontrib>Sauer, Sascha</creatorcontrib><creatorcontrib>Trefzer, Timo</creatorcontrib><creatorcontrib>Conrad, Christian</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Nguyen, Lan T.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Parekh, Swati</creatorcontrib><creatorcontrib>Janjic, Aleksandar</creatorcontrib><creatorcontrib>Wange, Lucas E.</creatorcontrib><creatorcontrib>Bagnoli, Johannes W.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Nikaido, Itoshi</creatorcontrib><creatorcontrib>Gut, Ivo</creatorcontrib><creatorcontrib>Stegle, Oliver</creatorcontrib><creatorcontrib>Heyn, Holger</creatorcontrib><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas. A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</description><subject>631/208/514/1949</subject><subject>631/61/212/2019</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animals</subject><subject>Benchmarking</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cell Line</subject><subject>Colon</subject><subject>Comparative analysis</subject><subject>Consortia</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Design</subject><subject>Efficiency</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Genomics - standards</subject><subject>Humans</subject><subject>Impact prediction</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Organs</subject><subject>Quality control</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sequence Analysis, RNA - standards</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-Cell Analysis - standards</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9LAzEQxYMotlY_gBdZ8Byd_JtNj7VULRQF0XNIstnaut2tm-3Bb2_WVrx5mQy8HzOT9wi5ZHDDQOjbKJnSOQUOFCSOqTwiQ6YkUoZjPE499CpTOCBnMa4BACXiKRkIrpiWIIZkfhdq_76x7ceqXmYxlSpQH6oqe3ma0Bg-d0nvpW3bdI1vqpiVTZv9ELarbOyFdfBdPCcnpa1iuDi8I_J2P3udPtLF88N8OlnQLYe8o7rE3DGP3jGliqBRBbCFE8pbUE6hlrpkpZIwzhUvWCmsFygLxx2mfzotRuR6PzctTtfFzqybXVunlYbLHHMptM7_p1gyhkmOibo6UDu3CYXZtqtkxZf59ScBfA_EJNXL0P6NYWD6EMw-BJOOM30IRopvzeN10Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mereu, Elisabetta</creator><creator>Lafzi, Atefeh</creator><creator>Moutinho, Catia</creator><creator>Ziegenhain, Christoph</creator><creator>McCarthy, Davis J.</creator><creator>Álvarez-Varela, Adrián</creator><creator>Batlle, Eduard</creator><creator>Sagar</creator><creator>Grün, Dominic</creator><creator>Lau, Julia K.</creator><creator>Boutet, Stéphane C.</creator><creator>Sanada, Chad</creator><creator>Ooi, Aik</creator><creator>Jones, Robert C.</creator><creator>Kaihara, Kelly</creator><creator>Brampton, Chris</creator><creator>Talaga, Yasha</creator><creator>Sasagawa, Yohei</creator><creator>Tanaka, Kaori</creator><creator>Hayashi, Tetsutaro</creator><creator>Braeuning, Caroline</creator><creator>Fischer, Cornelius</creator><creator>Sauer, Sascha</creator><creator>Trefzer, Timo</creator><creator>Conrad, Christian</creator><creator>Adiconis, Xian</creator><creator>Nguyen, Lan T.</creator><creator>Regev, Aviv</creator><creator>Levin, Joshua Z.</creator><creator>Parekh, Swati</creator><creator>Janjic, Aleksandar</creator><creator>Wange, Lucas E.</creator><creator>Bagnoli, Johannes W.</creator><creator>Enard, Wolfgang</creator><creator>Gut, Marta</creator><creator>Sandberg, Rickard</creator><creator>Nikaido, Itoshi</creator><creator>Gut, Ivo</creator><creator>Stegle, Oliver</creator><creator>Heyn, Holger</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><orcidid>https://orcid.org/0000-0003-2208-4877</orcidid><orcidid>https://orcid.org/0000-0002-4826-1651</orcidid><orcidid>https://orcid.org/0000-0001-7180-5381</orcidid><orcidid>https://orcid.org/0000-0002-4056-0550</orcidid><orcidid>https://orcid.org/0000-0002-3275-9156</orcidid><orcidid>https://orcid.org/0000-0003-3293-3158</orcidid><orcidid>https://orcid.org/0000-0002-7261-2570</orcidid><orcidid>https://orcid.org/0000-0003-0329-2435</orcidid><orcidid>https://orcid.org/0000-0001-7219-632X</orcidid><orcidid>https://orcid.org/0000-0001-6473-1740</orcidid><orcidid>https://orcid.org/0000-0001-7235-9854</orcidid><orcidid>https://orcid.org/0000-0002-3276-1889</orcidid><orcidid>https://orcid.org/0000-0002-3364-5898</orcidid></search><sort><creationdate>20200601</creationdate><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><author>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/514/1949</topic><topic>631/61/212/2019</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animals</topic><topic>Benchmarking</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cell Line</topic><topic>Colon</topic><topic>Comparative analysis</topic><topic>Consortia</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Design</topic><topic>Efficiency</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Genomics - standards</topic><topic>Humans</topic><topic>Impact prediction</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Organs</topic><topic>Quality control</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sequence Analysis, RNA - standards</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-Cell Analysis - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mereu, Elisabetta</creatorcontrib><creatorcontrib>Lafzi, Atefeh</creatorcontrib><creatorcontrib>Moutinho, Catia</creatorcontrib><creatorcontrib>Ziegenhain, Christoph</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Álvarez-Varela, Adrián</creatorcontrib><creatorcontrib>Batlle, Eduard</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Lau, Julia K.</creatorcontrib><creatorcontrib>Boutet, Stéphane C.</creatorcontrib><creatorcontrib>Sanada, Chad</creatorcontrib><creatorcontrib>Ooi, Aik</creatorcontrib><creatorcontrib>Jones, Robert C.</creatorcontrib><creatorcontrib>Kaihara, Kelly</creatorcontrib><creatorcontrib>Brampton, Chris</creatorcontrib><creatorcontrib>Talaga, Yasha</creatorcontrib><creatorcontrib>Sasagawa, Yohei</creatorcontrib><creatorcontrib>Tanaka, Kaori</creatorcontrib><creatorcontrib>Hayashi, Tetsutaro</creatorcontrib><creatorcontrib>Braeuning, Caroline</creatorcontrib><creatorcontrib>Fischer, Cornelius</creatorcontrib><creatorcontrib>Sauer, Sascha</creatorcontrib><creatorcontrib>Trefzer, Timo</creatorcontrib><creatorcontrib>Conrad, Christian</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Nguyen, Lan T.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Parekh, Swati</creatorcontrib><creatorcontrib>Janjic, Aleksandar</creatorcontrib><creatorcontrib>Wange, Lucas E.</creatorcontrib><creatorcontrib>Bagnoli, Johannes W.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Nikaido, Itoshi</creatorcontrib><creatorcontrib>Gut, Ivo</creatorcontrib><creatorcontrib>Stegle, Oliver</creatorcontrib><creatorcontrib>Heyn, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mereu, Elisabetta</au><au>Lafzi, Atefeh</au><au>Moutinho, Catia</au><au>Ziegenhain, Christoph</au><au>McCarthy, Davis J.</au><au>Álvarez-Varela, Adrián</au><au>Batlle, Eduard</au><au>Sagar</au><au>Grün, Dominic</au><au>Lau, Julia K.</au><au>Boutet, Stéphane C.</au><au>Sanada, Chad</au><au>Ooi, Aik</au><au>Jones, Robert C.</au><au>Kaihara, Kelly</au><au>Brampton, Chris</au><au>Talaga, Yasha</au><au>Sasagawa, Yohei</au><au>Tanaka, Kaori</au><au>Hayashi, Tetsutaro</au><au>Braeuning, Caroline</au><au>Fischer, Cornelius</au><au>Sauer, Sascha</au><au>Trefzer, Timo</au><au>Conrad, Christian</au><au>Adiconis, Xian</au><au>Nguyen, Lan T.</au><au>Regev, Aviv</au><au>Levin, Joshua Z.</au><au>Parekh, Swati</au><au>Janjic, Aleksandar</au><au>Wange, Lucas E.</au><au>Bagnoli, Johannes W.</au><au>Enard, Wolfgang</au><au>Gut, Marta</au><au>Sandberg, Rickard</au><au>Nikaido, Itoshi</au><au>Gut, Ivo</au><au>Stegle, Oliver</au><au>Heyn, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>38</volume><issue>6</issue><spage>747</spage><epage>755</epage><pages>747-755</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas. A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32518403</pmid><doi>10.1038/s41587-020-0469-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><orcidid>https://orcid.org/0000-0003-2208-4877</orcidid><orcidid>https://orcid.org/0000-0002-4826-1651</orcidid><orcidid>https://orcid.org/0000-0001-7180-5381</orcidid><orcidid>https://orcid.org/0000-0002-4056-0550</orcidid><orcidid>https://orcid.org/0000-0002-3275-9156</orcidid><orcidid>https://orcid.org/0000-0003-3293-3158</orcidid><orcidid>https://orcid.org/0000-0002-7261-2570</orcidid><orcidid>https://orcid.org/0000-0003-0329-2435</orcidid><orcidid>https://orcid.org/0000-0001-7219-632X</orcidid><orcidid>https://orcid.org/0000-0001-6473-1740</orcidid><orcidid>https://orcid.org/0000-0001-7235-9854</orcidid><orcidid>https://orcid.org/0000-0002-3276-1889</orcidid><orcidid>https://orcid.org/0000-0002-3364-5898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2020-06, Vol.38 (6), p.747-755
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_journals_2476743887
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/208/514/1949
631/61/212/2019
Agriculture
Analysis
Animals
Benchmarking
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cell Line
Colon
Comparative analysis
Consortia
Databases, Genetic
Datasets
Design
Efficiency
Gene expression
Gene sequencing
Genomics
Genomics - methods
Genomics - standards
Humans
Impact prediction
Laboratories
Life Sciences
Medical research
Mice
Molecular biology
Organs
Quality control
Ribonucleic acid
RNA
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Single-Cell Analysis - methods
Single-Cell Analysis - standards
title Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20single-cell%20RNA-sequencing%20protocols%20for%20cell%20atlas%20projects&rft.jtitle=Nature%20biotechnology&rft.au=Mereu,%20Elisabetta&rft.date=2020-06-01&rft.volume=38&rft.issue=6&rft.spage=747&rft.epage=755&rft.pages=747-755&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0469-4&rft_dat=%3Cproquest_pubme%3E2411081426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411081426&rft_id=info:pmid/32518403&rfr_iscdi=true