Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ su...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2020-06, Vol.38 (6), p.747-755 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | 6 |
container_start_page | 747 |
container_title | Nature biotechnology |
container_volume | 38 |
creator | Mereu, Elisabetta Lafzi, Atefeh Moutinho, Catia Ziegenhain, Christoph McCarthy, Davis J. Álvarez-Varela, Adrián Batlle, Eduard Sagar Grün, Dominic Lau, Julia K. Boutet, Stéphane C. Sanada, Chad Ooi, Aik Jones, Robert C. Kaihara, Kelly Brampton, Chris Talaga, Yasha Sasagawa, Yohei Tanaka, Kaori Hayashi, Tetsutaro Braeuning, Caroline Fischer, Cornelius Sauer, Sascha Trefzer, Timo Conrad, Christian Adiconis, Xian Nguyen, Lan T. Regev, Aviv Levin, Joshua Z. Parekh, Swati Janjic, Aleksandar Wange, Lucas E. Bagnoli, Johannes W. Enard, Wolfgang Gut, Marta Sandberg, Rickard Nikaido, Itoshi Gut, Ivo Stegle, Oliver Heyn, Holger |
description | Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.
A multicenter study compares 13 commonly used single-cell RNA-seq protocols. |
doi_str_mv | 10.1038/s41587-020-0469-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2476743887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411081426</sourcerecordid><originalsourceid>FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMotlY_gBdZ8Byd_JtNj7VULRQF0XNIstnaut2tm-3Bb2_WVrx5mQy8HzOT9wi5ZHDDQOjbKJnSOQUOFCSOqTwiQ6YkUoZjPE499CpTOCBnMa4BACXiKRkIrpiWIIZkfhdq_76x7ceqXmYxlSpQH6oqe3ma0Bg-d0nvpW3bdI1vqpiVTZv9ELarbOyFdfBdPCcnpa1iuDi8I_J2P3udPtLF88N8OlnQLYe8o7rE3DGP3jGliqBRBbCFE8pbUE6hlrpkpZIwzhUvWCmsFygLxx2mfzotRuR6PzctTtfFzqybXVunlYbLHHMptM7_p1gyhkmOibo6UDu3CYXZtqtkxZf59ScBfA_EJNXL0P6NYWD6EMw-BJOOM30IRopvzeN10Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411081426</pqid></control><display><type>article</type><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</creator><creatorcontrib>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.
A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0469-4</identifier><identifier>PMID: 32518403</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/514/1949 ; 631/61/212/2019 ; Agriculture ; Analysis ; Animals ; Benchmarking ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cell Line ; Colon ; Comparative analysis ; Consortia ; Databases, Genetic ; Datasets ; Design ; Efficiency ; Gene expression ; Gene sequencing ; Genomics ; Genomics - methods ; Genomics - standards ; Humans ; Impact prediction ; Laboratories ; Life Sciences ; Medical research ; Mice ; Molecular biology ; Organs ; Quality control ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - methods ; Sequence Analysis, RNA - standards ; Single-Cell Analysis - methods ; Single-Cell Analysis - standards</subject><ispartof>Nature biotechnology, 2020-06, Vol.38 (6), p.747-755</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</cites><orcidid>0000-0002-0170-3598 ; 0000-0003-2208-4877 ; 0000-0002-4826-1651 ; 0000-0001-7180-5381 ; 0000-0002-4056-0550 ; 0000-0002-3275-9156 ; 0000-0003-3293-3158 ; 0000-0002-7261-2570 ; 0000-0003-0329-2435 ; 0000-0001-7219-632X ; 0000-0001-6473-1740 ; 0000-0001-7235-9854 ; 0000-0002-3276-1889 ; 0000-0002-3364-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-020-0469-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-020-0469-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32518403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mereu, Elisabetta</creatorcontrib><creatorcontrib>Lafzi, Atefeh</creatorcontrib><creatorcontrib>Moutinho, Catia</creatorcontrib><creatorcontrib>Ziegenhain, Christoph</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Álvarez-Varela, Adrián</creatorcontrib><creatorcontrib>Batlle, Eduard</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Lau, Julia K.</creatorcontrib><creatorcontrib>Boutet, Stéphane C.</creatorcontrib><creatorcontrib>Sanada, Chad</creatorcontrib><creatorcontrib>Ooi, Aik</creatorcontrib><creatorcontrib>Jones, Robert C.</creatorcontrib><creatorcontrib>Kaihara, Kelly</creatorcontrib><creatorcontrib>Brampton, Chris</creatorcontrib><creatorcontrib>Talaga, Yasha</creatorcontrib><creatorcontrib>Sasagawa, Yohei</creatorcontrib><creatorcontrib>Tanaka, Kaori</creatorcontrib><creatorcontrib>Hayashi, Tetsutaro</creatorcontrib><creatorcontrib>Braeuning, Caroline</creatorcontrib><creatorcontrib>Fischer, Cornelius</creatorcontrib><creatorcontrib>Sauer, Sascha</creatorcontrib><creatorcontrib>Trefzer, Timo</creatorcontrib><creatorcontrib>Conrad, Christian</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Nguyen, Lan T.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Parekh, Swati</creatorcontrib><creatorcontrib>Janjic, Aleksandar</creatorcontrib><creatorcontrib>Wange, Lucas E.</creatorcontrib><creatorcontrib>Bagnoli, Johannes W.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Nikaido, Itoshi</creatorcontrib><creatorcontrib>Gut, Ivo</creatorcontrib><creatorcontrib>Stegle, Oliver</creatorcontrib><creatorcontrib>Heyn, Holger</creatorcontrib><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.
A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</description><subject>631/208/514/1949</subject><subject>631/61/212/2019</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animals</subject><subject>Benchmarking</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cell Line</subject><subject>Colon</subject><subject>Comparative analysis</subject><subject>Consortia</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Design</subject><subject>Efficiency</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Genomics - standards</subject><subject>Humans</subject><subject>Impact prediction</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Organs</subject><subject>Quality control</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sequence Analysis, RNA - standards</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-Cell Analysis - standards</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9LAzEQxYMotlY_gBdZ8Byd_JtNj7VULRQF0XNIstnaut2tm-3Bb2_WVrx5mQy8HzOT9wi5ZHDDQOjbKJnSOQUOFCSOqTwiQ6YkUoZjPE499CpTOCBnMa4BACXiKRkIrpiWIIZkfhdq_76x7ceqXmYxlSpQH6oqe3ma0Bg-d0nvpW3bdI1vqpiVTZv9ELarbOyFdfBdPCcnpa1iuDi8I_J2P3udPtLF88N8OlnQLYe8o7rE3DGP3jGliqBRBbCFE8pbUE6hlrpkpZIwzhUvWCmsFygLxx2mfzotRuR6PzctTtfFzqybXVunlYbLHHMptM7_p1gyhkmOibo6UDu3CYXZtqtkxZf59ScBfA_EJNXL0P6NYWD6EMw-BJOOM30IRopvzeN10Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mereu, Elisabetta</creator><creator>Lafzi, Atefeh</creator><creator>Moutinho, Catia</creator><creator>Ziegenhain, Christoph</creator><creator>McCarthy, Davis J.</creator><creator>Álvarez-Varela, Adrián</creator><creator>Batlle, Eduard</creator><creator>Sagar</creator><creator>Grün, Dominic</creator><creator>Lau, Julia K.</creator><creator>Boutet, Stéphane C.</creator><creator>Sanada, Chad</creator><creator>Ooi, Aik</creator><creator>Jones, Robert C.</creator><creator>Kaihara, Kelly</creator><creator>Brampton, Chris</creator><creator>Talaga, Yasha</creator><creator>Sasagawa, Yohei</creator><creator>Tanaka, Kaori</creator><creator>Hayashi, Tetsutaro</creator><creator>Braeuning, Caroline</creator><creator>Fischer, Cornelius</creator><creator>Sauer, Sascha</creator><creator>Trefzer, Timo</creator><creator>Conrad, Christian</creator><creator>Adiconis, Xian</creator><creator>Nguyen, Lan T.</creator><creator>Regev, Aviv</creator><creator>Levin, Joshua Z.</creator><creator>Parekh, Swati</creator><creator>Janjic, Aleksandar</creator><creator>Wange, Lucas E.</creator><creator>Bagnoli, Johannes W.</creator><creator>Enard, Wolfgang</creator><creator>Gut, Marta</creator><creator>Sandberg, Rickard</creator><creator>Nikaido, Itoshi</creator><creator>Gut, Ivo</creator><creator>Stegle, Oliver</creator><creator>Heyn, Holger</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><orcidid>https://orcid.org/0000-0003-2208-4877</orcidid><orcidid>https://orcid.org/0000-0002-4826-1651</orcidid><orcidid>https://orcid.org/0000-0001-7180-5381</orcidid><orcidid>https://orcid.org/0000-0002-4056-0550</orcidid><orcidid>https://orcid.org/0000-0002-3275-9156</orcidid><orcidid>https://orcid.org/0000-0003-3293-3158</orcidid><orcidid>https://orcid.org/0000-0002-7261-2570</orcidid><orcidid>https://orcid.org/0000-0003-0329-2435</orcidid><orcidid>https://orcid.org/0000-0001-7219-632X</orcidid><orcidid>https://orcid.org/0000-0001-6473-1740</orcidid><orcidid>https://orcid.org/0000-0001-7235-9854</orcidid><orcidid>https://orcid.org/0000-0002-3276-1889</orcidid><orcidid>https://orcid.org/0000-0002-3364-5898</orcidid></search><sort><creationdate>20200601</creationdate><title>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</title><author>Mereu, Elisabetta ; Lafzi, Atefeh ; Moutinho, Catia ; Ziegenhain, Christoph ; McCarthy, Davis J. ; Álvarez-Varela, Adrián ; Batlle, Eduard ; Sagar ; Grün, Dominic ; Lau, Julia K. ; Boutet, Stéphane C. ; Sanada, Chad ; Ooi, Aik ; Jones, Robert C. ; Kaihara, Kelly ; Brampton, Chris ; Talaga, Yasha ; Sasagawa, Yohei ; Tanaka, Kaori ; Hayashi, Tetsutaro ; Braeuning, Caroline ; Fischer, Cornelius ; Sauer, Sascha ; Trefzer, Timo ; Conrad, Christian ; Adiconis, Xian ; Nguyen, Lan T. ; Regev, Aviv ; Levin, Joshua Z. ; Parekh, Swati ; Janjic, Aleksandar ; Wange, Lucas E. ; Bagnoli, Johannes W. ; Enard, Wolfgang ; Gut, Marta ; Sandberg, Rickard ; Nikaido, Itoshi ; Gut, Ivo ; Stegle, Oliver ; Heyn, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p207t-8f67b1c6cb155de865e0adb35ca05b56848f1f5409752d1f3ac364db2b6020b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/514/1949</topic><topic>631/61/212/2019</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animals</topic><topic>Benchmarking</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cell Line</topic><topic>Colon</topic><topic>Comparative analysis</topic><topic>Consortia</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Design</topic><topic>Efficiency</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Genomics - standards</topic><topic>Humans</topic><topic>Impact prediction</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Organs</topic><topic>Quality control</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sequence Analysis, RNA - standards</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-Cell Analysis - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mereu, Elisabetta</creatorcontrib><creatorcontrib>Lafzi, Atefeh</creatorcontrib><creatorcontrib>Moutinho, Catia</creatorcontrib><creatorcontrib>Ziegenhain, Christoph</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Álvarez-Varela, Adrián</creatorcontrib><creatorcontrib>Batlle, Eduard</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Lau, Julia K.</creatorcontrib><creatorcontrib>Boutet, Stéphane C.</creatorcontrib><creatorcontrib>Sanada, Chad</creatorcontrib><creatorcontrib>Ooi, Aik</creatorcontrib><creatorcontrib>Jones, Robert C.</creatorcontrib><creatorcontrib>Kaihara, Kelly</creatorcontrib><creatorcontrib>Brampton, Chris</creatorcontrib><creatorcontrib>Talaga, Yasha</creatorcontrib><creatorcontrib>Sasagawa, Yohei</creatorcontrib><creatorcontrib>Tanaka, Kaori</creatorcontrib><creatorcontrib>Hayashi, Tetsutaro</creatorcontrib><creatorcontrib>Braeuning, Caroline</creatorcontrib><creatorcontrib>Fischer, Cornelius</creatorcontrib><creatorcontrib>Sauer, Sascha</creatorcontrib><creatorcontrib>Trefzer, Timo</creatorcontrib><creatorcontrib>Conrad, Christian</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Nguyen, Lan T.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Parekh, Swati</creatorcontrib><creatorcontrib>Janjic, Aleksandar</creatorcontrib><creatorcontrib>Wange, Lucas E.</creatorcontrib><creatorcontrib>Bagnoli, Johannes W.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Nikaido, Itoshi</creatorcontrib><creatorcontrib>Gut, Ivo</creatorcontrib><creatorcontrib>Stegle, Oliver</creatorcontrib><creatorcontrib>Heyn, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mereu, Elisabetta</au><au>Lafzi, Atefeh</au><au>Moutinho, Catia</au><au>Ziegenhain, Christoph</au><au>McCarthy, Davis J.</au><au>Álvarez-Varela, Adrián</au><au>Batlle, Eduard</au><au>Sagar</au><au>Grün, Dominic</au><au>Lau, Julia K.</au><au>Boutet, Stéphane C.</au><au>Sanada, Chad</au><au>Ooi, Aik</au><au>Jones, Robert C.</au><au>Kaihara, Kelly</au><au>Brampton, Chris</au><au>Talaga, Yasha</au><au>Sasagawa, Yohei</au><au>Tanaka, Kaori</au><au>Hayashi, Tetsutaro</au><au>Braeuning, Caroline</au><au>Fischer, Cornelius</au><au>Sauer, Sascha</au><au>Trefzer, Timo</au><au>Conrad, Christian</au><au>Adiconis, Xian</au><au>Nguyen, Lan T.</au><au>Regev, Aviv</au><au>Levin, Joshua Z.</au><au>Parekh, Swati</au><au>Janjic, Aleksandar</au><au>Wange, Lucas E.</au><au>Bagnoli, Johannes W.</au><au>Enard, Wolfgang</au><au>Gut, Marta</au><au>Sandberg, Rickard</au><au>Nikaido, Itoshi</au><au>Gut, Ivo</au><au>Stegle, Oliver</au><au>Heyn, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking single-cell RNA-sequencing protocols for cell atlas projects</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>38</volume><issue>6</issue><spage>747</spage><epage>755</epage><pages>747-755</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.
A multicenter study compares 13 commonly used single-cell RNA-seq protocols.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32518403</pmid><doi>10.1038/s41587-020-0469-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><orcidid>https://orcid.org/0000-0003-2208-4877</orcidid><orcidid>https://orcid.org/0000-0002-4826-1651</orcidid><orcidid>https://orcid.org/0000-0001-7180-5381</orcidid><orcidid>https://orcid.org/0000-0002-4056-0550</orcidid><orcidid>https://orcid.org/0000-0002-3275-9156</orcidid><orcidid>https://orcid.org/0000-0003-3293-3158</orcidid><orcidid>https://orcid.org/0000-0002-7261-2570</orcidid><orcidid>https://orcid.org/0000-0003-0329-2435</orcidid><orcidid>https://orcid.org/0000-0001-7219-632X</orcidid><orcidid>https://orcid.org/0000-0001-6473-1740</orcidid><orcidid>https://orcid.org/0000-0001-7235-9854</orcidid><orcidid>https://orcid.org/0000-0002-3276-1889</orcidid><orcidid>https://orcid.org/0000-0002-3364-5898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2020-06, Vol.38 (6), p.747-755 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_journals_2476743887 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/208/514/1949 631/61/212/2019 Agriculture Analysis Animals Benchmarking Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cell Line Colon Comparative analysis Consortia Databases, Genetic Datasets Design Efficiency Gene expression Gene sequencing Genomics Genomics - methods Genomics - standards Humans Impact prediction Laboratories Life Sciences Medical research Mice Molecular biology Organs Quality control Ribonucleic acid RNA Sequence Analysis, RNA - methods Sequence Analysis, RNA - standards Single-Cell Analysis - methods Single-Cell Analysis - standards |
title | Benchmarking single-cell RNA-sequencing protocols for cell atlas projects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20single-cell%20RNA-sequencing%20protocols%20for%20cell%20atlas%20projects&rft.jtitle=Nature%20biotechnology&rft.au=Mereu,%20Elisabetta&rft.date=2020-06-01&rft.volume=38&rft.issue=6&rft.spage=747&rft.epage=755&rft.pages=747-755&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0469-4&rft_dat=%3Cproquest_pubme%3E2411081426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411081426&rft_id=info:pmid/32518403&rfr_iscdi=true |