Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity

Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-06, Vol.39 (24), p.4636-4649
Hauptverfasser: Shmulevich, Riva, Nissim, Tsipi Ben-Kasus, Wolf, Ido, Merenbakh-Lamin, Keren, Fishman, Daniel, Sekler, Israel, Rubinek, Tami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4649
container_issue 24
container_start_page 4636
container_title Oncogene
container_volume 39
creator Shmulevich, Riva
Nissim, Tsipi Ben-Kasus
Wolf, Ido
Merenbakh-Lamin, Keren
Fishman, Daniel
Sekler, Israel
Rubinek, Tami
description Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho’s tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca 2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca 2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca 2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.
doi_str_mv 10.1038/s41388-020-1313-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2476738589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626339607</galeid><sourcerecordid>A626339607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-92af971c94afae240f7c2668b1fb9f54d0e360638babb65ca49150e4f2c44b073</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9lr9AW4k4HpqvmeyLMUvLLjRdTiTSe6kZCY1ySiF_nhze6tFUMkikDzvOTl5EHpJyRklfHhTBOXD0BFGOsop7-QjtKOiV52UWjxGO6Il6TTj7AQ9K-WKENJrwp6iE864Hgalduj2U0x1Tji7HyG7gq2LcYuQ8eIqjCmGsuDk8ZgdlIotrNblO6jgOue07WcMsboMNaT1QFqINmwLLvNWawzrHsM64SXUZOe0TjlAxGBr-B7qzXP0xEMs7sX9foq-vnv75eJDd_n5_ceL88vOCi5qmwC87qnVAjw4JojvLVNqGKkftZdiIo4rovgwwjgqaUFoKokTnlkhRtLzU_T6WPc6p2-bK9VcpS2vraVh7bt6PshB_5-ijArNJXmg9hCdCatPNYNdQrHmXDHFuVZ3Hc_-QrU1uSXYtDof2vkfAXoM2JxKyc6b6xwWyDeGEnOQbY6yTZNtDrKNbJlX9w_exsVNvxO_7DaAHYHSrta9yw8T_bvqT6b7tMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412149350</pqid></control><display><type>article</type><title>Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shmulevich, Riva ; Nissim, Tsipi Ben-Kasus ; Wolf, Ido ; Merenbakh-Lamin, Keren ; Fishman, Daniel ; Sekler, Israel ; Rubinek, Tami</creator><creatorcontrib>Shmulevich, Riva ; Nissim, Tsipi Ben-Kasus ; Wolf, Ido ; Merenbakh-Lamin, Keren ; Fishman, Daniel ; Sekler, Israel ; Rubinek, Tami</creatorcontrib><description>Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho’s tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca 2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca 2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca 2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-020-1313-5</identifier><identifier>PMID: 32398866</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/95 ; 14/34 ; 631/443/319/333/1465 ; 631/67/2327 ; 631/80/84 ; 9/10 ; 96/106 ; Aging ; AKT protein ; AMP ; Animals ; Apoptosis ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Calcium (mitochondrial) ; Calcium - metabolism ; Calcium channels ; Calcium influx ; Calcium Signaling ; Cancer ; Cancer cells ; Care and treatment ; Cell Biology ; Glucose metabolism ; Glucuronidase - genetics ; Glucuronidase - metabolism ; Glycolysis ; Human Genetics ; Humans ; Internal Medicine ; Klotho protein ; LKB1 protein ; MCF-7 Cells ; Medicine ; Medicine &amp; Public Health ; Membrane potential ; Metabolic pathways ; Metabolism ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Oncology ; Oxidative stress ; Phosphorylation ; Physiological aspects ; Tricarboxylic acid cycle ; Tumor suppressor genes</subject><ispartof>Oncogene, 2020-06, Vol.39 (24), p.4636-4649</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-92af971c94afae240f7c2668b1fb9f54d0e360638babb65ca49150e4f2c44b073</citedby><cites>FETCH-LOGICAL-c434t-92af971c94afae240f7c2668b1fb9f54d0e360638babb65ca49150e4f2c44b073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-020-1313-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-020-1313-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32398866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shmulevich, Riva</creatorcontrib><creatorcontrib>Nissim, Tsipi Ben-Kasus</creatorcontrib><creatorcontrib>Wolf, Ido</creatorcontrib><creatorcontrib>Merenbakh-Lamin, Keren</creatorcontrib><creatorcontrib>Fishman, Daniel</creatorcontrib><creatorcontrib>Sekler, Israel</creatorcontrib><creatorcontrib>Rubinek, Tami</creatorcontrib><title>Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho’s tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca 2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca 2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca 2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/95</subject><subject>14/34</subject><subject>631/443/319/333/1465</subject><subject>631/67/2327</subject><subject>631/80/84</subject><subject>9/10</subject><subject>96/106</subject><subject>Aging</subject><subject>AKT protein</subject><subject>AMP</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium Signaling</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Glucose metabolism</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>Glycolysis</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Klotho protein</subject><subject>LKB1 protein</subject><subject>MCF-7 Cells</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane potential</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Oncology</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor suppressor genes</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1rFTEUhoMo9lr9AW4k4HpqvmeyLMUvLLjRdTiTSe6kZCY1ySiF_nhze6tFUMkikDzvOTl5EHpJyRklfHhTBOXD0BFGOsop7-QjtKOiV52UWjxGO6Il6TTj7AQ9K-WKENJrwp6iE864Hgalduj2U0x1Tji7HyG7gq2LcYuQ8eIqjCmGsuDk8ZgdlIotrNblO6jgOue07WcMsboMNaT1QFqINmwLLvNWawzrHsM64SXUZOe0TjlAxGBr-B7qzXP0xEMs7sX9foq-vnv75eJDd_n5_ceL88vOCi5qmwC87qnVAjw4JojvLVNqGKkftZdiIo4rovgwwjgqaUFoKokTnlkhRtLzU_T6WPc6p2-bK9VcpS2vraVh7bt6PshB_5-ijArNJXmg9hCdCatPNYNdQrHmXDHFuVZ3Hc_-QrU1uSXYtDof2vkfAXoM2JxKyc6b6xwWyDeGEnOQbY6yTZNtDrKNbJlX9w_exsVNvxO_7DaAHYHSrta9yw8T_bvqT6b7tMI</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Shmulevich, Riva</creator><creator>Nissim, Tsipi Ben-Kasus</creator><creator>Wolf, Ido</creator><creator>Merenbakh-Lamin, Keren</creator><creator>Fishman, Daniel</creator><creator>Sekler, Israel</creator><creator>Rubinek, Tami</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20200611</creationdate><title>Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity</title><author>Shmulevich, Riva ; Nissim, Tsipi Ben-Kasus ; Wolf, Ido ; Merenbakh-Lamin, Keren ; Fishman, Daniel ; Sekler, Israel ; Rubinek, Tami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-92af971c94afae240f7c2668b1fb9f54d0e360638babb65ca49150e4f2c44b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/95</topic><topic>14/34</topic><topic>631/443/319/333/1465</topic><topic>631/67/2327</topic><topic>631/80/84</topic><topic>9/10</topic><topic>96/106</topic><topic>Aging</topic><topic>AKT protein</topic><topic>AMP</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium Signaling</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Glucose metabolism</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>Glycolysis</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Klotho protein</topic><topic>LKB1 protein</topic><topic>MCF-7 Cells</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane potential</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Oncology</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shmulevich, Riva</creatorcontrib><creatorcontrib>Nissim, Tsipi Ben-Kasus</creatorcontrib><creatorcontrib>Wolf, Ido</creatorcontrib><creatorcontrib>Merenbakh-Lamin, Keren</creatorcontrib><creatorcontrib>Fishman, Daniel</creatorcontrib><creatorcontrib>Sekler, Israel</creatorcontrib><creatorcontrib>Rubinek, Tami</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shmulevich, Riva</au><au>Nissim, Tsipi Ben-Kasus</au><au>Wolf, Ido</au><au>Merenbakh-Lamin, Keren</au><au>Fishman, Daniel</au><au>Sekler, Israel</au><au>Rubinek, Tami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-06-11</date><risdate>2020</risdate><volume>39</volume><issue>24</issue><spage>4636</spage><epage>4649</epage><pages>4636-4649</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho’s tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca 2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca 2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca 2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32398866</pmid><doi>10.1038/s41388-020-1313-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2020-06, Vol.39 (24), p.4636-4649
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_journals_2476738589
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 1-Phosphatidylinositol 3-kinase
13/95
14/34
631/443/319/333/1465
631/67/2327
631/80/84
9/10
96/106
Aging
AKT protein
AMP
Animals
Apoptosis
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Calcium (mitochondrial)
Calcium - metabolism
Calcium channels
Calcium influx
Calcium Signaling
Cancer
Cancer cells
Care and treatment
Cell Biology
Glucose metabolism
Glucuronidase - genetics
Glucuronidase - metabolism
Glycolysis
Human Genetics
Humans
Internal Medicine
Klotho protein
LKB1 protein
MCF-7 Cells
Medicine
Medicine & Public Health
Membrane potential
Metabolic pathways
Metabolism
Mice
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Oncology
Oxidative stress
Phosphorylation
Physiological aspects
Tricarboxylic acid cycle
Tumor suppressor genes
title Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Klotho%20rewires%20cellular%20metabolism%20of%20breast%20cancer%20cells%20through%20alteration%20of%20calcium%20shuttling%20and%20mitochondrial%20activity&rft.jtitle=Oncogene&rft.au=Shmulevich,%20Riva&rft.date=2020-06-11&rft.volume=39&rft.issue=24&rft.spage=4636&rft.epage=4649&rft.pages=4636-4649&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-020-1313-5&rft_dat=%3Cgale_proqu%3EA626339607%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412149350&rft_id=info:pmid/32398866&rft_galeid=A626339607&rfr_iscdi=true