Single-forward-step projective splitting: exploiting cocoercivity
This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equi...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2021, Vol.78 (1), p.125-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Computational optimization and applications |
container_volume | 78 |
creator | Johnstone, Patrick R. Eckstein, Jonathan |
description | This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equivalent to Lipschitz differentiability. Prior forward-step versions of projective splitting did not fully exploit cocoercivity and required
two
forward steps per iteration for such operators. Our new single-forward-step method establishes a symmetry between projective splitting algorithms, the classical forward–backward splitting method (FB), and Tseng’s forward-backward-forward method. The new procedure allows for larger stepsizes for cocoercive operators: the stepsize bound is
2
β
for a
β
-cocoercive operator, the same bound as has been established for FB. We show that FB corresponds to an unattainable boundary case of the parameters in the new procedure. Unlike FB, the new method allows for a backtracking procedure when the cocoercivity constant is unknown. Proving convergence of the algorithm requires some departures from the prior proof framework for projective splitting. We close with some computational tests establishing competitive performance for the method. |
doi_str_mv | 10.1007/s10589-020-00238-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476734968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-168e160f328ed155efdde2bc71def6515a8b1a9009c00527f566ffad679cf46c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOdmzHbFXFl1SJAZit1DlXqUITbLfQf49LkNiY7obnfe_0EHLJ4JoB6JvIQFaGAgcKwEVFxRGZMKkF5ZUpj8kEDFdUAYhTchbjGgCMFnxCZi_tZtUh9X34rENDY8KhGEK_RpfaHRZx6NqUMnNb4NfQ9e1hL1zvegyu3bVpf05OfN1FvPidU_J2f_c6f6SL54en-WxBnWAmUaYqZAq84BU2TEr0TYN86TRr0CvJZF0tWW3yXw5Acu2lUt7XjdLG-VI5MSVXY2_-7mOLMdl1vw2bfNLyUistSqOqTPGRcqGPMaC3Q2jf67C3DOxBlR1V2azK_qiyIofEGIoZ3qww_FX_k_oGzC9s5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476734968</pqid></control><display><type>article</type><title>Single-forward-step projective splitting: exploiting cocoercivity</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Johnstone, Patrick R. ; Eckstein, Jonathan</creator><creatorcontrib>Johnstone, Patrick R. ; Eckstein, Jonathan</creatorcontrib><description>This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equivalent to Lipschitz differentiability. Prior forward-step versions of projective splitting did not fully exploit cocoercivity and required
two
forward steps per iteration for such operators. Our new single-forward-step method establishes a symmetry between projective splitting algorithms, the classical forward–backward splitting method (FB), and Tseng’s forward-backward-forward method. The new procedure allows for larger stepsizes for cocoercive operators: the stepsize bound is
2
β
for a
β
-cocoercive operator, the same bound as has been established for FB. We show that FB corresponds to an unattainable boundary case of the parameters in the new procedure. Unlike FB, the new method allows for a backtracking procedure when the cocoercivity constant is unknown. Proving convergence of the algorithm requires some departures from the prior proof framework for projective splitting. We close with some computational tests establishing competitive performance for the method.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-020-00238-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational geometry ; Convex analysis ; Convex and Discrete Geometry ; Convexity ; Inclusions ; Iterative methods ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Operators ; Optimization ; Splitting ; Statistics</subject><ispartof>Computational optimization and applications, 2021, Vol.78 (1), p.125-166</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-168e160f328ed155efdde2bc71def6515a8b1a9009c00527f566ffad679cf46c3</citedby><cites>FETCH-LOGICAL-c319t-168e160f328ed155efdde2bc71def6515a8b1a9009c00527f566ffad679cf46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-020-00238-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-020-00238-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Johnstone, Patrick R.</creatorcontrib><creatorcontrib>Eckstein, Jonathan</creatorcontrib><title>Single-forward-step projective splitting: exploiting cocoercivity</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equivalent to Lipschitz differentiability. Prior forward-step versions of projective splitting did not fully exploit cocoercivity and required
two
forward steps per iteration for such operators. Our new single-forward-step method establishes a symmetry between projective splitting algorithms, the classical forward–backward splitting method (FB), and Tseng’s forward-backward-forward method. The new procedure allows for larger stepsizes for cocoercive operators: the stepsize bound is
2
β
for a
β
-cocoercive operator, the same bound as has been established for FB. We show that FB corresponds to an unattainable boundary case of the parameters in the new procedure. Unlike FB, the new method allows for a backtracking procedure when the cocoercivity constant is unknown. Proving convergence of the algorithm requires some departures from the prior proof framework for projective splitting. We close with some computational tests establishing competitive performance for the method.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Convexity</subject><subject>Inclusions</subject><subject>Iterative methods</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Operators</subject><subject>Optimization</subject><subject>Splitting</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOdmzHbFXFl1SJAZit1DlXqUITbLfQf49LkNiY7obnfe_0EHLJ4JoB6JvIQFaGAgcKwEVFxRGZMKkF5ZUpj8kEDFdUAYhTchbjGgCMFnxCZi_tZtUh9X34rENDY8KhGEK_RpfaHRZx6NqUMnNb4NfQ9e1hL1zvegyu3bVpf05OfN1FvPidU_J2f_c6f6SL54en-WxBnWAmUaYqZAq84BU2TEr0TYN86TRr0CvJZF0tWW3yXw5Acu2lUt7XjdLG-VI5MSVXY2_-7mOLMdl1vw2bfNLyUistSqOqTPGRcqGPMaC3Q2jf67C3DOxBlR1V2azK_qiyIofEGIoZ3qww_FX_k_oGzC9s5A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Johnstone, Patrick R.</creator><creator>Eckstein, Jonathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Single-forward-step projective splitting: exploiting cocoercivity</title><author>Johnstone, Patrick R. ; Eckstein, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-168e160f328ed155efdde2bc71def6515a8b1a9009c00527f566ffad679cf46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Convexity</topic><topic>Inclusions</topic><topic>Iterative methods</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Operators</topic><topic>Optimization</topic><topic>Splitting</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnstone, Patrick R.</creatorcontrib><creatorcontrib>Eckstein, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnstone, Patrick R.</au><au>Eckstein, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-forward-step projective splitting: exploiting cocoercivity</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2021</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>125</spage><epage>166</epage><pages>125-166</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equivalent to Lipschitz differentiability. Prior forward-step versions of projective splitting did not fully exploit cocoercivity and required
two
forward steps per iteration for such operators. Our new single-forward-step method establishes a symmetry between projective splitting algorithms, the classical forward–backward splitting method (FB), and Tseng’s forward-backward-forward method. The new procedure allows for larger stepsizes for cocoercive operators: the stepsize bound is
2
β
for a
β
-cocoercive operator, the same bound as has been established for FB. We show that FB corresponds to an unattainable boundary case of the parameters in the new procedure. Unlike FB, the new method allows for a backtracking procedure when the cocoercivity constant is unknown. Proving convergence of the algorithm requires some departures from the prior proof framework for projective splitting. We close with some computational tests establishing competitive performance for the method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-020-00238-3</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2021, Vol.78 (1), p.125-166 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2476734968 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Computational geometry Convex analysis Convex and Discrete Geometry Convexity Inclusions Iterative methods Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Operators Optimization Splitting Statistics |
title | Single-forward-step projective splitting: exploiting cocoercivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-forward-step%20projective%20splitting:%20exploiting%20cocoercivity&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Johnstone,%20Patrick%20R.&rft.date=2021&rft.volume=78&rft.issue=1&rft.spage=125&rft.epage=166&rft.pages=125-166&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-020-00238-3&rft_dat=%3Cproquest_cross%3E2476734968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476734968&rft_id=info:pmid/&rfr_iscdi=true |